
Deskcorder: A Recorder for What Happens at your Desk

Andrew “Jamoozy” Correa jamoozy@csail.mit.edu
Ali “Alawi” Mohammad alawi@csail.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

In this paper, we present the beginnings of a toolkit
(consisting of a set of binaries and file formats) ded-
icated to recording, storing, and playing back time-
synchronized pen data and audio. We call our program
“Deskcorder”.

As of this publication, you can check out and con-
tribute to our code from our SVN repository, at:

http://deskcorder.googlecode.com/svn/trunk

For information on how to get and run a copy for your-
self, see the README.txt file under the link above.

Deskcorder is under the GPL v.3 (1); please con-
tribute!

1.1 Goal

Deskcorder was conceived by Ali Mohammad to enable
him to record recitations and compile quick explana-
tions, thereby allowing students to focus on class in-
stead of having to take time copying down the board.
Andrew Correa started contributing to Deskcorder
when he realized that it could be used as a tool to
aide his sketch recognition research.

1.2 Ontology

A run of Deskcorder is organized into what we call
a lecture. Originally, one lecture corresponded to
an actual lecture—the period of time between when
a professor or TA starts class and when he or she
ends class—however more generally a lecture can be
thought of as a “session”, not necessarily taking place
in a classroom.

Each lecture is a collection of at least 0 audio snippets,
at least 1 mouse move, and at least 1 slide (fig. 1).
Each slide can be thought of as a separate sheet of
paper. New slides are meant to be used when tran-
sitioning to a new idea, or when there is not enough
room on the current slide to continue drawing. A slide
is simply a collection of pen strokes—the period be-
tween mouse-down and mouse-up events—and mouse

Lecture

Move

Slide Slide

Move Move

Audio Audio Audio

Figure 1. Structure of a lecture.

moves—the period of time between a mouse-up and a
mouse-down event1.

1.3 Purpose of this Document

This document describes the binaries and file formats
we have created and plan to create to record, store,
and play lectures. Its purpose is to get you, the reader,
excited about Deskcorder. We would like you to use
this program and contribute by giving comments and
suggestions, and maybe even contributing some code!
We sincerely hope that Deskcorder can be useful to
you.

2. Related Work

There are several free software applications that enable
you to draw and record freehand sketches and store
them as images (2; 3) or vector graphics (4), however
we are aware of no programs—free or otherwise—that
also record fine-grained time stamp data to allow real-
time playback.

There are proprietary systems (5) that record notes
and audio, but these systems rely on special hard-
ware or are prohibitively expensive for a private user2.

1Moves are included to allow the lecturer to point some-
thing out without having to draw a stroke

2Prices range from $129.95 for the smallest-offered
PulseTM Smartpen (11) with 2GB of storage, to $1,595.95

http://deskcorder.googlecode.com/svn/trunk

In contrast to these proprietary systems, our sys-
tem runs on standard computers—requiring at least
a mouse, and at most a standard drawing surface and
microphone—and is free software, so accessible to all.

We are aware of several desktop screen capture pro-
grams, that record everything happening on your desk-
top. One such program, Camstudio (6), comes with
its own video codec that stores audio losslessly. It is
possible to use Camstudio in combination with e.g.,
Xournal to perform approximately the same task as
Deskcorder. However a) videos produced this way have
a fixed resolution; b) this requires running multiple
programs; and c) much information is often recorded
that is useless for the purposes of simple demonstra-
tions3. Programs like Camstudio were made to be able
to share the answer to the qustion, “How do I config-
ure X to do Y ?”, instead of demonstrating how, for
example, binary tree rotations work to a novice pro-
grammer.

We believe that a huge advantage Deskcorder has over
other methods of recording strokes, is that Deskcorder
combines the accessibility of free software with the
power to produce an output that is as viewable as a
video file, while maintaining scalability and time syn-
chronization.

3. Programs

In order for these tools to be widely adopted, one desk-
top program and one web-based program are included.
The desktop program serves as a convenient way to
record lectures given in front of a class or lectures
made at a desk in private, while the web program offers
easy-access playback, allowing anyone wishing to view
a lecture to view it, without having to install another
program.

3.1 Desktop Program

Our desktop program is written in Python (7) and
GTK+ (8). This program can record and playback
Deskcorder lectures as well as convert a lecture to
a PDF file or PNG files4. Further, an “Export to
Flash...” feature is being made that will produce a
single, stand-alone SWF file meant to be posted on-
line and viewed in a browser. Fig. 2 shows a screen
shot of our program playing back a DCB file of a lec-
ture describing how to perform a liked list insertion.

for NoteAmation!TMset of pen, pad, and paper.
3For example, the background and the OS application

decoration.
4Full integration of these features is not complete.

Figure 2. A screenshot of the Python/GTK+ version of
Deskcorder in use while explaining linked-list insertions.

3.2 Web Programs

We have plans for two web programs: a Flash (9)
version that is currently under construction, and an
HTML 5 (10) version that will be implemented when
HTML 5 becomes more widespread. Work on the
Flash version has already begun, in the form of a SWF-
generating library written in Python. We decided to
make a Flash version, because Flash is widely used
(97% of users according to slashdot.org), but that it
is undesirable since it is a proprietary (though open)
standard, and we intend to deprecate it as soon as
suitable free standards are adopted by the public.

A more practical difficulty we are experiencing with
Flash, is its inability to open arbitrary files. This
makes development of a stand-alone, web-accessible
Flash application cumbersome. Ideally we would like
an application that “just reads in” our DCB file format
and plays it as the desktop version would. Instead, the
desktop version exports a stand-alone Flash file that
stores and plays back a lecture. We expect the HTML
5 version of the web application will not require the
same special export feature to be maintained.

3.3 Deskcorder Binary File Format

The Deskcorder binary (DCB) file format is what
Deskcorder uses to save and load lectures. Fig. 3 shows
a graphical representation of the file format.

As discussed in § 2, the strength of this file over other
recording formats, is that it uses lossless vector graph-
ics and audio. The downside is that this is a specific
format that requires a special reader.

http://slashdot.org

Move

(float) norm'd X

time stamp

(float) norm'd Y

Point

(float) norm'd X

time stamp

(float) pressure

(float) norm'd YAudio
time stamp

bytes in compressed data

(compressed audio data)

Slide

#Stroke entries

time stamps

(Stroke entries)

Stroke

(Point entries)

#Point entries

(float) norm'd G

(float) norm'd R

(float) norm'd B

Lecture

major version

(data) 0x42FA32BA22AAAABB

bug version

minor version

#Slide entries

#Move entries

(Move entries)

#Audio entries

(Audio entries)

(Slide entries)

Figure 3. An outline of the most-recent Deskcorder binary
file format (v.0.1.1). Long boxes are 8 bytes, short boxes
are 4. All boxes without types are integers. Position, color,
and pressure data are all in the range [0, 1] to simplify code
wishing to display a DCB lecture.

4. Future Work

Since Deskcorder is still in its infancy, there is much
left to do. Firstly, we plan to finish the Flash appli-
cation and the Deskcorder Flash-export feature. In
the longer-term (starting in the neighborhood of half
a year from the time of this writing) we plan to begin
development on an HTML 5 version that we think will
not suffer from the drawbacks of Flash (mentioned in
§ 3.2).

We plan to improve the PDF- and PNG-export process
by a) integrating the PDF and PNG export features
into the GTK+ interface; b) lifting the “one-slide/one-
page” rule and allowing export of arbitrary points in
time in the lecture; and c) allowing the addition of
text descriptions for each page. These changes will
make DCB files more accessible, as you will be able
to export the lecture into a series of hand-selected,
labeled snapshots in time, with descriptions explaining
what is happening in the page.

In an effort to increase Deskcorder’s use, we plan to
create versions that run on all three major operating
systems: Windows, Linux, and Mac OS. We are still
investigating whether to make separate GUIs for each
OS or choose one GUI toolkit that works on all three
OSs (e.g., Qt or Python’s TkInter).

In the very long term, we acknowledge the possibility
that it may be worthwhile to create an optimized ver-
sion written in a lower-level language (e.g., C). How-
ever, this decision is still far in the future.

5. Conclusion

We have presented the beginnings of a set of programs
and file formats that we hope will be useful to the
broader population in giving lectures, working with
pen-based systems, or just explaining something to
friends or colleagues. We encourage suggestions via
email and ask that you become a member of our com-
munity! We hope you will enjoy using Deskcorder as
much as we do.

Acknowledgments

Ali Mohammad started creating this program in the
Spring of 2009 to help him teach his classes. Andrew
Correa picked up the project and ran with it in the
Summer 2010 to use as a tool in his research in multi-
modal understanding.

Ali Mohammad is credited with envisioning the
project, starting its development process, and all work
on the Flash application. Andrew Correa is cred-
ited with developing the file formats and expand-
ing the technology to be useful on the Desktop (the
Python/GTK+ version).

All development was done on Ubuntu GNU/Linux sys-
tems.

References

(1) The Free Software Foundation http://fsf.org

(2) Xournal http://xournal.sourceforge.net/

(3) GIMP: The GIMP Image Manipulation Program
http://www.gimp.org/

(4) Inkscape http://inkscape.org

(5) NoteAmation!TMby Rover INKTM

http://www.roverusa.com/roverink/

noteamation.asp

(6) Camstudio http://camstudio.org

(7) Python http://python.org

(8) GTK+ The GIMP Toolkit http://gtk.org

(9) Adobe Flash
http://www.adobe.com/products/flashplayer/

(10) HTML 5 http://dev.w3.org/html5/spec/

(11) Livescribe Smartpen
http://www.livescribe.com/en-us/

http://fsf.org
http://xournal.sourceforge.net/
http://www.gimp.org/
http://inkscape.org
http://www.roverusa.com/roverink/noteamation.asp
http://www.roverusa.com/roverink/noteamation.asp
http://camstudio.org
http://python.org
http://gtk.org
http://www.adobe.com/products/flashplayer/
http://dev.w3.org/html5/spec/
http://www.livescribe.com/en-us/

	Introduction
	Goal
	Ontology
	Purpose of this Document

	Related Work
	Programs
	Desktop Program
	Web Programs
	Deskcorder Binary File Format

	Future Work
	Conclusion

