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Abstract

One of the first steps towards understanding
natural multimodal language is aligning ges-
ture and speech, so that the appropriate ges-
tures ground referential pronouns in the speech.
This paper presents a novel technique for
gesture-speech alignment, inspired by salience-
based approaches to anaphoric pronoun reso-
lution. We use a hybrid between data-driven
and knowledge-based mtehods: the basic struc-
ture is derived from a set of rules about gesture
salience, but the salience weights themselves
are learned from a corpus. Our system achieves
95% recall and precision on a corpus of tran-
scriptions of unconstrained multimodal mono-
logues, significantly outperforming a competi-
tive baseline.

1 Introduction

In face to face communication, speakers frequently use
gesture to supplement speech (Chovil, 1992), using the
additional modality to provide unique, non-redundant in-
formation (McNeill, 1992). In the context of pen/speech
user interfaces, Oviatt finds that “multimodal ... language
is briefer, syntactically simpler, and less disfluent than
users’ unimodal speech.” (Oviatt, 1999)

One of the simplest and most direct ways in which ges-
ture can supplement verbal communication is by ground-
ing references, usually through deixis. For example, it is
impossible to extract the semantic content of the verbal
utterance “I’ll take this one” without an accompanying
pointing gesture indicating the thing that is desired. The
problem ofgesture-speech alignmentinvolves choosing
the appropriate gesture to ground each verbal utterance.
This paper describes a novel technique for this problem.
We evaluate our system on a corpus of multimodal mono-
logues with no fixed grammar or vocabulary.

1.1 Example
[This]_1 thing goes over [here]_2 so
that it goes back ...
--------------------
1. Deictic: Hand rests on latch mechanism
2. Iconic: Hand draws trajectory from

right to left

In this example, there are three verbal references. The
word “this” refers to the latch mechanism, which is indi-
cated by the rest position of the hand. “Here” refers to the
endpoint of the trajectory indicated by the iconic gesture.
“It” is an anaphoric reference to a noun phrase defined
earlier in the sentence; there is no accompanying gesture.
The word “that” does not act as a reference, although it
could in other cases. Not every pronoun keyword (e.g.,
this, here, it, that, etc.) will act as a reference in all cases.
In addition, there will be many gestures that do not re-
solve any keyword.

2 Related Work

This research draws mainly from two streams of re-
lated work. Researchers in human-computer interaction
have worked towards developing multimodal user inter-
faces, which allow spoken and gestural input. These sys-
tems often feature powerful algorithms for fusing modal-
ities; however, they also restrict communication to short
grammatically-constrained commands over a very lim-
ited vocabulary. Since our goal is to handle more com-
plex linguistic phenomena, these systems were of little
help in the design of our algorithm. Conversely, we found
that the problem of anaphora resolution faces a very sim-
ilar set of challenges as gesture-speech alignment. We
were able to apply techniques from anaphora resolution
to gesture-speech alignment.

2.1 Multimodal User Interfaces

Discussion of multimodal user interfaces begins with the
seminal “Put-That-There” system (Bolt, 1980), which al-
lowed users to issue natural language commands and use
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deictic hand gestures to resolve references from speech.
Commands were subject to a strict grammar and align-
ment was straightforward: keywords created holes in the
semantic frame, and temporally-aligned gestures filled
the holes.

More recent systems have extended this approach
somewhat. Johnston and Bangalore describe a multi-
modal parsing algorithm that is built using a 3-tape, finite
state transducer (FST) (Johnston and Bangalore, 2000).
The speech and gestures of each multimodal utterance
are provided as input to an FST whose output is a se-
mantic representation conveying the combined meaning.
A similar system, based on a graph-matching algorithm,
is described in (Chai et al., 2004). These systems per-
form mutual disambiguation, where each modality helps
to correct errors in the others. However, both approaches
restrict users to a predefined grammar and lexicon, and
rely heavily on having a complete, formal ontology of
the domain.

In (Kettebekov et al., 2002), a co-occurrence model
relates the salient prosodic features of the speech (pitch
variation and pause) to characteristic features of gestic-
ulation (velocity and acceleration). The goal was to im-
prove performance of gesture recognition, rather than to
address the problem of alignment directly. Their ap-
proach also differs from ours in that they operate at the
level of speech signals, rather than recognized words.
Potentially, the two approaches could compliment each
other in a unified system.

2.2 Anaphora Resolution

Anaphora resolution involves linking an anaphor to its
corresponding antecedent in the same or previous sen-
tence. In many cases, speech/gesture multimodal fusion
works in a very similar way, with gestures grounding
some of the same anaphoric pronouns (e.g., “this”, “that”,
“here”).

One approach to anaphora resolution is to assign a
salience value to each noun phrase that is a candidate
for acting as a grounding referent, and then to choose
the noun phrase with the greatest salience (Lappin and
Leass, 1994). Mitkov showed that a salience-based ap-
proach can be applied across genres and without com-
plex syntactic, semantic, and discourse analysis (Mitkov,
1998). Salience values are typically computed by apply-
ing linguistic knowledge; e.g., recent noun phrases are
more salient, gender and number should agree, etc. This
knowledge is applied to derive a salience value through
the application of a set of predefined salience weights
on each feature. Salience weights may be defined by
hand, as in (Lappin and Leass, 1994), or learned from
data (Mitkov et al., 2002).

Anaphora resolution and gesture-speech alignment are
very similar problems. Both involve resolving ambigu-

ous words which reference other parts of the utterance.
In the case of anaphora resolution, pronomial references
resolve to previously uttered noun phrases; in gesture-
speech alignment, keywords are resolved by gestures,
which usually precede the keyword. The salience-based
approach works for anaphora resolution because the fac-
tors that contribute to noun-phrase salience are well un-
derstood. We define a parallel set of factors for evaluating
the salience of gestures.

3 Our Approach

The most important goal of our system is the ability to
handle natural, human-to-human language usage. This
includes disfluencies and grammatically incorrect utter-
ances, which become even more problematic when con-
sidering that the output of speech recognizers is far from
perfect. Any approach that requires significant parsing
or other grammatical analysis may be ill-suited to meet
these goals.

Instead, we identify keywords that are likely to require
gestural referents for resolution. Our goal is to produce
an alignment – a set ofbindings– that match at least some
of the identified keywords with one or more gestures.
There are several things that are known to contribute to
the salience of candidate gesture-speech bindings:

• The relevant gesture is usually close in time to the
keyword (Oviatt et al., 1997; Cohen et al., 2002)

• The gesture usually precedes the keyword (Oviatt et
al., 1997).

• A one-to-one mapping is preferred. Multiple key-
words rarely align with a single gesture, and mul-
tiple gestures almost never align with a single key-
word (Eisenstein and Davis, 2003).

• Some types of gestures, such as deictic pointing ges-
tures, are more likely to take part in keyword bind-
ings. Other gestures (i.e., beats) do not carry this
type of semantic content, and instead act to moder-
ate turn taking or indicate emphasis. These gestures
are unlikely to take part in keyword bindings (Cas-
sell, 1998).

• Some keyword/gesture combinations may be partic-
ularly likely; for example, the keyword “this” and a
deictic pointing gesture.

These rules mirror the salience weighting features em-
ployed by the anaphora resolution methods described in
the previous section. We define a parameterizable penalty
function that prefers alignments that adhere to as many of
these rules as possible. Given a set of verbal utterances
and gestures, we then try to find the set of bindings with
the minimal penalty. This is essentially an optimization



approach, and we use the simplest possible optimization
technique: greedy hill-climbing. Of course, given a set
of penalties and the appropriate representation, any op-
timization technique could be applied. In the evaluation
section, we discuss whether and how much our system
would benefit from using a more sophisticated optimiza-
tion technique. Later in this section, we formalize the
problem and our proposed solution.

3.1 Leveraging Empirical Data

One of the advantages of the salience-based approach is
that it enables the creation of a hybrid system that ben-
efits both from our intuitions about multimodal commu-
nication and from a corpus of annotated data. The form
of the salience metric, and the choice of features that fac-
tor into it, is governed by our knowledge about the way
speech and gesture work. However, the penalty func-
tion also requires parameters that weigh the importance
of each factor. These parameters can be crafted by hand
if no corpus is available, but they can also be learned from
data. By using knowledge about multimodal language to
derive the form and features of the salience metric, and
using a corpus to fine-tune the parameters of this metric,
we can leverage the strengths of both knowledge-based
and data-driven approaches.

4 Formalization

We define a multimodal transcriptM to consist of a set
of spoken utterancesS and gesturesG. S contains a set
of referencesR that must be ground by a gestural ref-
erent. We define a binding,b ∈ B, as a tuple relating
a gesture,g ∈ G, to a corresponding speech reference,
r ∈ R. ProvidedG andR, the setB enumerates all
possible bindings between them. Formally, each gesture,
reference, and binding are defined as

g = 〈tgs , tge , Gtype〉
r = 〈trs, tre, w〉
b = 〈g, r〉

(1)

wherets, te describe the start and ending time of a gesture
or reference,w ∈ S is the word corresponding tor, and
Gtype is the type of gesture (e.g.deicticor trajectory).

An alternative, useful description of the setB is as the
functionb(g) which returns for each gesture a set of cor-
responding references. This function is defined as

b(g) = {r|〈g, r〉 ∈ B} (2)

4.1 Rules

In this section we provide the analytical form for the
penalty functions of Section 3. We have designed these
functions to penalize bindings that violate the preferences
that model our intuitions about the relationship between

speech and gesture. We begin by presenting the analytical
form for the binding penalty function,ψb.

It is most often the case that verbal references closely
follow the gestures that they refer to; the verbal reference
rarely precedes the gesture. To reflect this knowledge,
we parameterizeψb using a time gap penalty,αtg, and a
wrong order penalty,αwo as follows,

ψb(b) = αtgwtg(b) + αwowwo(b) (3)

where,

wwo(b) =

{
0 trs ≥ tgs
1 trs < tgs

andwtg = |trs − tgs |
In addition to temporal agreement, specific words or

parts-of-speech have varying affinities for different types
of gestures. We incorporate these penalties intoψb by in-
troducing a binding agreement penalty,α(b), as follows:

ψb(b) = αtgwwo(b) + α(b) (4)

The remaining penalty functions model binding fertil-
ity. Specifically, we assign a penalty for each unassigned
gesture and reference,ψg(g) andψr(r) respectively, that
reflect our desire for the algorithm to produce bindings.
Certain gesture types (e.g., deictics) are much more likely
to participate in bindings than others (e.g., beats). An
unassigned gesture penalty is associated with each ges-
ture type, given byψg(g). Similarly, we expect refer-
ences to have a likelihood of being bound that is condi-
tioned on their word or part-of-speech tag. However, we
currently handle all keywords in the same way, with a
constant penaltyψr(r) for unassigned keywords.

4.2 Minimization Algorithm

GivenG andR we wish to find aB∗ ⊆ B that minimizes
the penalty functionψ(B,G,R):

B∗ = arg min
B̂

ψ(B̂,G,R) (5)

Using the penalty functions of Section 4.1ψ(B̂,G,R) is
defined as,

ψ(B̂,G,R) =
∑
b∈B̂

ψb(b) + ψg(Ga) + ψr(Ra) (6)

where
Ga = {g|b(g) = ∅}
Ra = {r|b(r) = ∅} .

Although there are numerous optimization techniques
that may be applied to minimize Equation 5, we have
chosen to implement a naive gradient decent algorithm
presented below as Algorithm 1. Observing the prob-
lem, note we could have initializedB∗ = B; in other



Algorithm 1 Gradient Descent

InitializeB∗ = ∅ andB′ = B
repeat

Let b0 be the first element inB′

δmax = ψ(B∗, G,R)− ψ({B∗, b0}, G,R)
bmax = b0
for all b ∈ B′, b 6= b0 do
δ = ψ(B∗, G,R)− ψ({B∗, b}, G,R)
if δ > δmax then
bmax = b
δmax = δ

end if
end for
if δmax > 0 then
B∗ = {B∗, bmax}
B′ = B′ − bmax

end if
Convergence test: isδmax < limit?

until convergence

words, start off with all possible bindings, and gradu-
ally prune away the bad ones. But it seems likely that
|B∗| ≤ min(|R|, |G|); thus, starting from the empty set
will converge faster. The time complexity of this algo-
rithm is given byO(|B∗||B|). Since|B| = |G||R|, and
assuming|B∗| ∝ |G| ∝ |R|, this simplifies toO(|B∗|3),
cubic in the number of bindings returned.

4.3 Learning Parameters

We explored a number of different techniques for find-
ing the parameters of the penalty function: setting them
by hand, gradient descent, simulated annealing, and a ge-
netic algorithm. A detailed comparison of the results with
each approach is beyond the scope of this paper, but the
genetic algorithm outperformed the other approaches in
both accuracy and rate of convergence.

The genome representation consisted of a thirteen bit
string for each penalty parameter; three bits were used
for the exponent, and the remaining ten were used for
the base. Parameters were allowed to vary from10−4

to 103. Since there were eleven parameters, the overall
string length was 143. A population size of 200 was used,
and training proceeded for 50 generations. Single-point
crossover was applied at a rate of 90%, and the mutation
rate was set to 3% per bit. Tournament selection was used
rather than straightforward fitness-based selection (Gold-
berg, 1989).

5 Evaluation

We evaluated our system by testing its performance
on a set of 26 transcriptions of unconstrained human-
to-human communication, from nine different speak-

Baseline Training Test

Recall 84.2% 94.6% 95.1%
σ n/a 1.2% 5.1%

Precision 82.8% 94.5% 94.5%
σ n/a 1.2% 5.0%

Table 1: Performance of our system versus a baseline

ers (Eisenstein and Davis, 2003). Of the four women and
five men who participated, eight were right-handed, and
one was a non-native English speaker. The participants
ranged in age from 22 to 28. All had extensive computer
experience, but none had any experience in the task do-
main, which required explaining the behavior of simple
mechanical devices.

The participants were presented with three conditions,
each of which involved describing the operation of a me-
chanical device based on a computer simulation. The
conditions were shown in order of increasing complexity,
as measured by the number of moving parts: a latchbox, a
piston, and a pinball machine. Monologues ranged in du-
ration from 15 to 90 seconds; the number of gestures used
ranged from six to 58. In total, 574 gesture phrases were
transcribed, of which 239 participated in gesture-speech
bindings.

In explaining the devices, the participants were al-
lowed – but not instructed – to refer to a predrawn di-
agram that corresponded to the simulation. Vocabulary,
grammar, and gesture were not constrained in any way.
The monologues were videotaped, transcribed, and an-
notated by hand. No gesture or speech recognition was
performed. The decision to use transcriptions rather than
speech and gesture recognizers will be discussed in detail
below.

5.1 Empirical Results

We averaged results over ten experiments, in which 20%
of the data was selected randomly and held out as a test
set. Entire transcripts were held out, rather than parts of
each transcript. This was necessary because the system
considers the entire transcript holistically when choosing
an alignment.

For a baseline, we evaluated the performance of choos-
ing the temporally closest gesture to each keyword.
While simplistic, this approach is used in several imple-
mented multimodal user interfaces (Bolt, 1980; Koons
et al., 1993). Kettebekov and Sharma even reported that
93.7% of gesture phrases were “temporally aligned” with
the semantically associated keyword in their corpus (Ket-
tebekov and Sharma, 2001). Our results with this base-
line were somewhat lower, for reasons discussed below.

Table 1 shows the results of our system and the base-
line on our corpus. Our system significantly outperforms



the baseline on both recall and precision on this corpus
(p < 0.05, two-tailed). Precision and recall differ slightly
because there are keywords that do not bind to any ges-
ture. Our system does not assume a one-to-one mapping
between keywords and gestures, and will refuse to bind
some keywords if there is no gesture with a high enough
salience. One benefit of our penalty-based approach is
that it allows us to easily trade off between recall and
precision. Reducing the penalties for unassigned ges-
tures and keywords will cause the system to create fewer
alignments, increasing precision and decreasing recall.
This could be useful in a system where mistaken ges-
ture/speech alignments are particularly undesirable. By
increasing these same penalties, the opposite effect can
also be achieved.

Both systems perform worse on longer monologues.
On the top quartile of monologues by length (measured
in number of keywords), the recall of the baseline system
falls to 75%, and the recall of our system falls to 90%.
For the baseline system, we found a correlation of -0.55
(df = 23, p < 0.01) between F-measure and monologue
length.

This may help to explain why Kettebekov and Sharma
found such success with the baseline algorithm. The mul-
timodal utterances in their corpus consisted of relatively
short commands. The longer monologues in our corpus
tended to be more grammatically complex and included
more disfluency. Consequently, alignment was more dif-
ficult, and a relatively näıve strategy, such as the baseline
algorithm, was less effective.

6 Discussion

To our knowledge, very few multimodal understanding
systems have been evaluated using natural, unconstrained
speech and gesture. One exception is (Quek et al., 2002),
which describes a system that extracts discourse struc-
ture from gesture on a corpus of unconstrained human-
to-human communication; however, no quantitative anal-
ysis is provided. Of the systems that are more relevant
to the specific problem of gesture-speech alignment (Co-
hen et al., 1997; Johnston and Bangalore, 2000; Kette-
bekov and Sharma, 2001), evaluation is always conducted
from an HCI perspective, in which participants act as
users of a computer system and communicate in short,
grammatically-constrained multimodal commands. As
shown in Section 5.1, such commands are significantly
easier to align than the natural multimodal communica-
tion found in our corpus.

6.1 The Corpus

A number of considerations went into gathering this cor-
pus.1 One of our goals was to minimize the use of
discourse-related “beat” gestures, so as to better focus on
the deictic and iconic gestures that are more closely re-
lated to the content of the speech; that is why we focused
on monologues rather than dialogues. We also wanted the
corpus to be relevant to the HCI community. That is why
we provided a diagram to gesture at, which we believe
serves a similar function to a computer display, providing
reference points for deictic gestures. We used a predrawn
diagram – rather than letting participants draw the dia-
gram themselves – because interleaved speech, gesture,
and sketching is a much more complicated problem, to
be addressed only after bimodal speech-gesture commu-
nication is better understood.

For a number of reasons, we decided to focus ontran-
scriptionsof speech and gesture, rather than using speech
and gesture recognition systems. Foremost is that we
wanted the language in our corpus to be as natural as pos-
sible; in particular, we wanted to avoid restricting speak-
ers to a finite list of gestures. Building a recognizer that
could handle such unconstrained gesture would be a sub-
stantial undertaking and an important research contribu-
tion in its own right. However, we are sensitive to the con-
cern that our system should scale to handle possibly erro-
neous recognition data. There are three relevant classes of
errors that our system may need to handle: speech recog-
nition, gesture recognition, and gesture segmentation.

• Speech Recognition Errors
The speech recognizer could fail to recognize a key-
word; in this case, a binding would simply not be
created. If the speech recognizer misrecognized
a non-keyword as a keyword, a spurious binding
might be created. However, since our system does
not require that all keywords have bindings, we feel
that our approach is likely to degrade gracefully in
the face of this type of error.

• Gesture Recognition Errors
This type of error would imply a gestural misclas-
sification, e.g., classifying a deictic pointing gesture
as an iconic. Again, we feel that a salience-based
system will degrade gracefully with this type of er-
ror, since there are no hard requirements on the type
of gesture for forming a binding. In contrast, a sys-
tem that required, say, a deictic gesture to accom-
pany a certain type of command would be very sen-
sitive to a gesture misclassification.

1We also considered using the recently released FORM2
corpus from the Linguistic Data Consortium. However, this
corpus is presently more focused on the kinematics of hand and
upper body movement, rather than on higher-level linguistic in-
formation relating to gestures and speech.



• Gesture Segmentation Errors
Gesture segmentation errors are probably the most
dangerous, since this could involve incorrectly
grouping two separate gestures into a single gesture,
or vice versa. It seems that this type of error would
be problematic for any approach, and we have no
reason to believe that our salience-based approach
would fare differently from any other approach.

6.2 Success Cases

Our system outperformed the baseline by more than 10%.
There were several types of phenomena that the base-
line failed to handle. In this corpus, each gesture pre-
cedes the semantically-associated keyword 85% of the
time. Guided by this fact, we first created a baseline sys-
tem that selected the nearest preceding gesture for each
keyword; clearly, the maximum performance for such a
baseline is 85%. Slightly better results were achieved by
simply choosing the nearest gesture regardless of whether
it precedes the keyword; this is the baseline shown in Ta-
ble 1. However, this baseline incorrectly bound several
cataphoric gestures. The best strategy is to accept just a
few cataphoric gestures in unusual circumstances, but a
näıve baseline approach is unable to do this.

Most of the other baseline errors came about when
the mapping from gesture to speech was not one-to-one.
For example, in the utterance “this piece here,” the two
keywords actually refer to a single deictic gesture. In
the salience-based approach, the two keywords were cor-
rectly bound to a single gesture, but the baseline insisted
on finding two gestures. The baseline similarly mishan-
dled situations where a keyword was used without refer-
ring to any gesture.

6.3 Failure Cases

Although the recall and precision of our system neared
95%, investigating the causes of error could suggest
potential improvements. We were particularly interested
in errors on the training set, where overfitting could not
be blamed. This section describes two sources of error,
and suggests some potential improvements.

6.3.1 Disfluencies

We adopted a keyword-based approach so that our sys-
tem would be more robust to disfluency than alternative
approaches that depended on parsing. While we were
able to handle many instances of disfluent speech, we
found that disfluencies occasionally disturbed the usual
relationship between gesture and speech. For example,
consider the following utterance:

It has this... this spinning thing...

Our system attempted to bind gestures to each occur-
rence of “this”, and ended up binding each reference to a
different gesture. Moreover,both references were bound
incorrectly. The relevant gesture in this case occurs after
both references. This is an uncommon phenomenon, and
as such, was penalized highly. However, anecdotally
it appears that the presence of a disfluency makes this
phenomenon more likely. A disfluency is frequently
accompanied by an abortive gesture, followed by the
full gesture occurring somewhat later than the spoken
reference. It is possible that a system that could detect
disfluency in the speech transcript could account for this
phenomenon.

6.3.2 Greedy Search

Our system applies a greedy hill-climbing opti-
mization to minimize the penalty. While this greedy
optimization performs surprisingly well, we were able
to identify a few cases of errors that were caused by the
greedy nature of our optimization, e.g.

...once it hits this, this thing is blocked.

In this example, the two references are right next to
each other. The relevant gestures are also very near each
other. The ideal bindings are shown in Figure 1a. The
earlier “this” is considered first, but from the system’s
perspective, the best possible binding is the second ges-
ture, since it overlaps almost completely with the spoken
utterance (Figure 1b). However, once the second gesture
is bound to the first reference, it is removed from the list
of unassigned gestures. Thus, if the second gesture were
also bound to the second utterance, the penalty would
still be relatively high. Even though the earlier gesture
is farther away from the second reference, it is still on the
list of unassigned gestures, and the system can reduce the
overall penalty considerably by binding it. The system
ends up crisscrossing, and binding the earlier gesture to
the later reference, and vice versa (Figure 1c).

7 Future Work

The errors discussed in the previous section suggest some
potential improvements to our system. In this section, we
describe four possible avenues of future work: dynamic
programming, deeper syntactic analysis, other anaphora
resolution techniques, and user adaptation.

7.1 Dynamic Programming

Algorithm 1 provides only an approximate solution to
Equation 5. As demonstrated in Section 6.3.2, the greedy
choice is not always optimal. Using dynamic program-
ming, an exhaustive search of the space of bindings can
be performed within polynomial time.



(a) (b) (c)

Figure 1: The greedy binding problem. (a) The correct binding, (b) the greedy binding, (c) the result.

We definem[i, j] to be the penalty of the optimal sub-
setB∗ ⊂ {bi, ..., bj} ∈ B, i ≤ j. m[i, j] is implemented
as ak × k lookup table, wherek = |B| = |G||R|. Each
entry of this table is recursively defined by preceding ta-
ble entries. Specifically,m[i, j] is computed by perform-
ing exhaustive search on its subsets of bindings. Using
this lookup table, an optimal solution to Equation 5 is
therefore found asψ(B∗, G,R) = m[1, k]. Again as-
suming|B∗| ∝ |G| ∝ |R|, the size of the lookup table is
given byO(|B∗|4). Thus, it is possible to find the glob-
ally optimal set of bindings, by moving from anO(n3)
algorithm toO(n4). The precise definition of a recur-
rence relation form[i, j] and a proof of correctness will
be described in a future publication.

7.2 Syntactic Analysis

One obvious possibility for improvement would be to in-
clude more sophisticated syntactic information beyond
keyword spotting. However, we require that our system
remain robust to disfluency and recognition errors. Part
of speech tagging is a robust method of syntactic anal-
ysis which could allow us to refine the penalty function
depending on the usage case. Consider that there at least
three relevant uses of the keyword “this.”

1. Thismovie is better than A.I.

2. This is the bicycle ridden by E.T.

3. The wheel moves likethis.

When “this” is followed by a noun (case 1), a deic-
tic gesture is likely, although not strictly necessary. But
when “this” is followed by a verb (case 2), a deictic
gesture is usually crucial for understanding the sentence.
Thus, the penalty for not assigning this keyword should
be very high. Finally, in the third case, when the keyword
follows a preposition, a trajectory gesture is more likely,
and the penalty for any such binding should be lowered.

7.3 Other Anaphora Resolution Techniques

We have based this research on salience values, which
is just one of several possible alternative approaches to
anaphora resolution. One such alternative is the use of

constraints: rules that eliminate candidates from the list
of possible antecedents (Rich and Luperfoy, 1988). An
example of a constraint in anaphora resolution is a rule
requiring the elimination of all candidates that disagree
in gender or number with the referential pronoun. Con-
straints may be used in combination with a salience met-
ric, to prune away unlikely choices before searching.
The advantage is that enforcing constraints could be sub-
stantially less computationally expensive than searching
through the space of all possible bindings for the one with
the highest salience. One possible future project would be
to develop a set of constraints for speech-gesture align-
ment, and investigate the effect of these constraints on
both accuracy and speed.

Ge, Hale, and Charniak propose a data-driven ap-
proach to anaphora resolution (Ge et al., 1998). For a
given pronoun, their system can compute a probability
for each candidate antecedent. Their approach of seek-
ing to maximize this probability is similar to the salience-
maximizing approach that we have described. However,
instead of using a parametric salience function, they learn
a set of conditional probability distributions directly from
the data. If this approach could be applied to gesture-
speech alignment, it would be advantageous because the
binding probabilities could be combined with the output
of probabilistic recognizers to produce a pipeline archi-
tecture, similar to that proposed in (Wu et al., 1999). Such
an architecture would provide multimodal disambigua-
tion, where the errors of each component are corrected
by other components.

7.4 Multimodal Adaptation

Speakers have remarkably entrenched multimodal com-
munication patterns, with some users overlapping ges-
ture and speech, and others using each modality sequen-
tially (Oviatt et al., 1997). Moreover, these multimodal
integration patterns do not seem to be malleable, sug-
gesting that multimodal user interfaces should adapt to
the user’s tendencies. We have already shown how the
weights of the salience metric can adapt for optimal per-
formance against a corpus of user data; this approach
could also be extended to adapt over time to an individual
user.



8 Conclusions

This work represents one of the first efforts at aligning
gesture and speech on a corpus of natural multimodal
communication. Using greedy optimization and only a
minimum of linguistic processing, we significantly out-
perform a competitive baseline, which has actually been
implemented in existing multimodal user interfaces. Our
approach is shown to be robust to spoken English, even
with a high level of disfluency. By blending some of the
benefits of empirical and knowledge-based approaches,
our system can learn from a large corpus of data, but de-
grades gracefully when limited data is available.

Obviously, alignment is only one small component of
a comprehensive system for recognizing and understand-
ing multimodal communication. Putting aside the issue
of gesture recognition, there is still the problem of de-
riving semantic information from aligned speech-gesture
units. The solutions to this problem will likely have to be
specially tailored to the application domain. While our
evaluation indicates that our approach achieves what ap-
pears to be a high level of accuracy, the true test will be
whether our system can actually support semantic infor-
mation extraction from multimodal data. Only the con-
struction of such a comprehensive end-to-end system will
reveal whether the algorithm and features that we have
chosen are sufficient, or whether a more sophisticated ap-
proach is required.
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