MIT Artificial Intelligence Laboratory, September 2002 1

Natural Editing and Recognition of UML Class Diagrams

Tracy Hammond, Kalani Oshiro, and Randy Davis

The Problem: Sketching is a natural and integral part of software design. Software developers use
sketching to aid in the brainstorming of ideas, visualizing programming organization, and understand-
ing of requirements. Unfortunately, when it comes to coding the system, the drawings are left behind.
We see natural sketch recognition as a way to bridge that gap.

Motivation: We have selected UML diagrams because they are a de facto standard for depicting soft-
ware applications. Within UML we focused on class diagrams, first because of their central role in de-
scribing program structure, and second because many of the symbols used in class diagrams are quite
similar, and hence, they offer an interesting challenge for sketch recognition.

Previous Work: Work at Berkeley by Hse [3] has shown that users prefer a single-stroke sketch-based
user interface to a mouse-and-palette based tool for UML design.

One company [2] has developed a gesture based diagramming tool, Ideogramic UML,™which al-
lows users to sketch UML diagrams. The tool is based on a graffiti-like implementation and requires
users to draw each gesture in one stroke, and in the direction and style as specified by the user manual.
As a consequence, some of the gestures drawn only loosely resemble the output glyph. For example, ¢
is the stroke used to indicate an actor, drawn by the system as a stick figure.

Work at Queen’s University has developed a system to recognize sketches of UML diagrams using
a distance metric [4]. Each glyph (square, circle, or line) is classified based on the total stroke length
compared to the perimeter of its bounding box (e.g., if the stroke length is approximately equal to the
perimeter of the bounding box, it is classified as a square). The shape of the stroke is not considered.

Approach: Our goal is a system in which the users can sketch UML diagrams on a tablet or whiteboard
in the same way they are drawn on paper, and have the diagrams recognized by the computer. Thus far,
we have created a natural sketch recognition environment for UML (Unified Modeling Language) [1].
Our system differs from graffiti-based approaches to this task in that it recognizes objects by how they
look, not by how they are drawn.

While sketching, the sketcher can seamlessly switch between two views: the interpreted designs or
the original strokes. Editing commands operate identically in the two views. Some sketchers become
distracted by the sketch recognition process when it replaces their strokes with the interpreted version.
The alternate views allow the users to sketch as they are more comfortable.

Impact: The recognition system is connected to Rational Rose, a popular CASE tool, and can output
diagrams directly to Rational Rose. This enables the user to take full advantage of the benefits of a CASE
tool, such as the ability to auto-generate code stubs, while still retaining the natural feeling of a sketch
tool.

Future Work: Future system enhancements include allowing the user to sketch more detail about a
program. For instance, we plan to add the ability to recognize multiplicity relationships by noting
properties sketched around associations.

Research Support: This work is supported in part by the Ford/MIT Alliance and by the MIT Oxygen
Collaboration.

& 5ketch UML Demo I (=1 | [sketch UML Demo (ol
File Edit Project Search Help File Edit Project Search Help
Game: [Graphic:
Game lcorDack: v S
CardDeck deck eetor pliper et
Vector player ‘Dealahle
ey
play {etemnine Winner
determinelifinner
=
CardDeck
CardDeck ector Dok Player
Vecrar Deck fe scare
o Bmarana
shuse (Cord gt TopCira
[Ly Tum
lcard x /
— [Hand
loreeg s
——
—— elsctCard
seetsard " each
TN search) frieur
i
Biue: Drawn, Black: Interpreted Blue: Drawn, Black: Interpreted

Figure 1: Hand drawn UML class diagram and its accompanying interpreted diagram

=lolx ~loix]
File Edit Project Search Help File Edit Project Search Help
[CardDeck
Game ector Deck
CardDeck deck [CariDeck deck
Vector player Torne ector player £
Card ZetTgeCard b fetectptas
arder [. fistemmine Winer
alable jCazd Dealahle
ftring runk
e
[Card(suir, rark)
priee.
Plover |
= Hand
Jind hand
Graphics SN S——
E— st
ey
it frievr
Blue: Drawn, Black: Interpreted Blue: Drawn, Black: Interpreted

Figure 2: The same class diagram as in Figure 1 with the classes rearranged suing the system’s editing
ability and the interpreted diagram.

References:

[1] Sinan Si Alhir. UML in a Nutshell: a desktop quick reference. O'Reilly & Associates, Inc., Cambrigde,
MA, 1998.

[2] Christian Heide Damm, Klaus Marius Hansen, and Michael Thomsen. Tool support for cooperative
object-oriented design: Gesture based modeling on an electronic whiteboard. In CHI 2000. CHI,

April 2000.

[3] Heloise Hse, Michael Shilman, A. Richard Newton, and James Landay. Sketch-based user interfaces
for collaborative object-oriented modeling. Berkley CS5260 Class Project, December 1999.

[4] Edward Lank, Jeb S. Thorley, and Sean Jy-Shyang Chen. An interactive system for recognizing hand
drawn UML diagrams. In Proceedings for CASCON 2000, 2000.

