
MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering

and Computer Science

Proposal for Thesis Research in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

Title: A Domain Description Language for Sketch Recognition

Submitted by: Tracy Hammond
MIT Artificial Intelligence Laboratory (Signature of Author)

200 Technology Square, NE43-809
Cambridge, MA 02141

Date of Submission: March 19, 2003
Expected Date of Completion: April 2004
Laboratory: Artificial Intelligence Laboratory

Brief Statement of the Problem:
To date, sketch recognition systems have been domain-specific, with the recogni-

tion details of the domain hard-coded into the system. A domain-independent recog-
nition system is advantageous since it may be used for several domains, increasing the
flexibility and capabilities of a system. In order to recognize a sketch in a particular
domain, domain-specific information must be supplied to the domain-independent
recognition system.

In this thesis, we plan to develop a domain description language used to describe
domain-specific information to a domain-independent sketch recognition system. Al-
though the language is primarily based on shape, the domain description will include
other types of information that may be helpful to the recognition process, such as
stroke order or stroke direction. The language consists of pre-defined shapes, con-
straints, editing behaviors, and display methods, as well as a syntax for specifying a
domain description and extending the language.

The difficulty in creating such a language is ensuring that the language consists
of the appropriate pre-defined shapes, constraints, and editing behaviors, such that
common complex shapes and shape interactions can be described, and that these
descriptions can be built intuitively.

We plan to analyze the proposed language using a range of criteria. We will
test the language for human usability, testing that the language is expressive, is

extensible, and provides the appropriate abstractions. We will test human usability
by asking users to develop domain descriptions using the proposed language. We
will test whether these descriptions agree with the users’ intensions and whether
recognition based on these descriptions is computationally feasible by developing a
simple domain-independent sketch recognition system.

Massachusetts Institute of Technology
Department of Electrical Engineering

and Computer Science
Cambridge, Massachusetts 02139

Doctoral Thesis Supervision Agreement

To: Department Graduate Committee
From: Professor Randall Davis

The program outlined in the proposal:

Title: A Domain Description Language for Sketch Recognition
Author: Tracy Hammond

Date: March 19, 2003

is adequate for a Doctoral thesis. I believe that appropriate readers for this thesis
would be:

Reader 1: Doctor Steffani Seneff
Reader 2: Professor Rob Miller

Facilities and support for the research outlined in the proposal are available. I am
willing to supervise the thesis and evaluate the thesis report.

Signed:
Professor of Computer Science

and Engineering

Date:

Comments:

Massachusetts Institute of Technology
Department of Electrical Engineering

and Computer Science
Cambridge, Massachusetts 02139

Doctoral Thesis Reader Agreement

To: Department Graduate Committee
From: Doctor Steffani Seneff

The program outlined in the proposal:

Title: A Domain Description Language for Sketch Recognition
Author: Tracy Hammond

Date: March 19, 2003
Supervisor: Professor Randall Davis

Other Reader: Professor Rob Miller

is adequate for a Doctoral thesis. I am willing to aid in guiding the research and
in evaluating the thesis report as a reader.

Signed:
Principal Research Scientist in Electrical

Engineering and Computer Science

Date:

Comments:

Massachusetts Institute of Technology
Department of Electrical Engineering

and Computer Science
Cambridge, Massachusetts 02139

Doctoral Thesis Reader Agreement

To: Department Graduate Committee
From: Professor Rob Miller

The program outlined in the proposal:

Title: A Domain Description Language for Sketch Recognition
Author: Tracy Hammond

Date: March 19, 2003
Supervisor: Professor Randall Davis

Other Reader: Doctor Steffani Seneff

is adequate for a Doctoral thesis. I am willing to aid in guiding the research and
in evaluating the thesis report as a reader.

Signed:
Professor of Electrical Engineering

and Computer Science

Date:

Comments:

Contents

1 Introduction: Contributions and Motivation 11
1.1 Contributions . 11
1.2 Motivation . 12

2 Review of Literature 14
2.1 The Birth and Death of Sketching Interfaces 14
2.2 The Rebirth of Sketching Interfaces 15
2.3 Sketch-based Applications . 15
2.4 Sketching Languages Based on Shape 17

3 Thesis Context - Other Projects of the Design Rationale Group 19
3.1 Domain-Specific Recognizers . 19
3.2 Domain-Independent Recognizers . 20
3.3 Blackboard Recognition Architecture 20

4 Sketching Domains 21
4.0.1 Types of Domains . 21

4.1 Software Design: UML (Unified Modeling Language) 22
4.2 Software Design: Flow Charts . 24
4.3 Java GUIs . 26
4.4 Web Pages . 26
4.5 Finite State Machines . 27
4.6 Organizational Charts . 27
4.7 Calendar Notation . 28
4.8 Device Connections . 29
4.9 Mechanical Engineering . 30
4.10 Circuit Diagrams: Digital and Analog 30
4.11 Course of Action Diagrams . 32
4.12 Map Creation . 33
4.13 Chemical Notation . 34
4.14 Graffiti . 34
4.15 Sheet Music . 35
4.16 Dance Choreography: Benesh . 36
4.17 Dance Choreography: Labanotation 36
4.18 Sports Games: Football . 37

6

4.19 Sports Games: Basketball . 38
4.20 Sports Games: Baseball . 39
4.21 Interior Design . 40
4.22 Architecture . 41

5 Language 43
5.1 Pre-Defined Shapes . 43
5.2 Pre-defined Constraints . 46
5.3 Pre-defined Editing Behaviors . 51

5.3.1 Triggers . 52
5.3.2 Actions . 53

5.4 Pre-defined Display Methods . 54

6 Specifying a Domain Description 56
6.1 Listing the Domain Shapes and Shape Interactions 57

6.1.1 Domain Shapes . 57
6.1.2 List of Domain Shapes . 58
6.1.3 Domain Shape Interactions . 59
6.1.4 List of Domain Shape Interactions 61

6.2 Defining Shapes . 61
6.2.1 Defining Abstract Shapes . 63

6.3 Defining Shape Interactions . 65
6.4 Defining Abstract Shape Interactions 66
6.5 Defining Constraints . 67
6.6 Defining Editing Behaviors . 67

7 Testing and Analysis of the Language 69
7.1 Describing Domains . 69
7.2 Recognition System . 69
7.3 User Studies . 69

A Example: Domain Description for UML 71
A.1 arrows-library.dd . 71
A.2 sketch-UML.dd . 72

B Proposed Schedule of Thesis Milestones 82

7

List of Figures

2-1 Ivan Sutherland and the Sketchpad system. 14

3-1 Multi-Domain Sketch Recognition System. 20

4-1 Sketched picture of a UML Class Diagram of a Blackjack Program . . 22
4-2 Interpreted picture of the UML Class Diagram of a blackjack program

shown in Figure 4-1 . 23
4-3 Sketch drawing of a flowchart software diagram for a card game. . . . 25
4-4 Basic flow chart symbols [11]. 25
4-5 Hand drawn diagram of a java gui. 26
4-6 A website design, with the links represented as arrows. 27
4-7 A finite state machine accepting strings with an even number of A’s

and B’s. 27
4-8 MIT Administration Organizational Chart. 28
4-9 A star marks an appointment as important on the calendar. 28
4-10 The arrow reschedules the appointment for a different time. 29
4-11 The shapes used to mark a calendar. 29
4-12 The Ligature system used in the MIT AI lab. 29
4-13 ASSIST: A Shrewd Sketch Interpretation and Simulation Tool. 30
4-14 Digital Circuit . 31
4-15 . 31
4-16 Course of Action Diagram [34]. 32
4-17 Samples of a few shapes found in Course of Action diagrams. 33
4-18 Hand drawn maps a Yukon Hostel and of Watervale. 33
4-19 Hand drawn maps of Livingston and San Pedro. 34
4-20 The chemistry symbol for ethanol. 34
4-21 The Greek alphabet in Graffiti. 35
4-22 The Mongolian alphabet in Graffiti. 35
4-23 Hand drawn sheet music. 36
4-24 A Fouette-en-Tournant in Benesh notation. 36
4-25 A figure illustrating the parts of a dancer in labanotation. 37
4-26 A hand drawn dance motion in Labanotation on the left and its cleaned

version on the right as recognized by LabanPad [19]. 37
4-27 A football play diagram. 38
4-28 A basketball play diagram for zone offense. 39
4-29 Baseball play of pitcher covering first base. 39

8

4-30 The interior design of a bathroom. 40
4-31 The interior design of an entire floor. 41
4-32 A hand drawn virtual reality scene and several views of the virtual

reality scene created by Sketch VR. 42

5-1 An open arrow. 43
5-2 The description for an arrow with an open head 44
5-3 A hand drawn spiral. 44

6-1 The description for an arrow with a triangle-shaped head. 62
6-2 The domain shape UML Inheritance Association is defined by the ge-

ometrical shape TriangleArrow from Figure 6-1. 63
6-3 The inheritance diagram of UML Class Diagram shapes. 64
6-4 The description for two abstract classes. 64
6-5 Description of the composed shape of an association attached to the

tail of a general class. 65
6-6 Description of the composed shape of a general association with a gen-

eral class attached to its head and its tail. 66
6-7 The composed shape describing how forces push objects. 66

9

List of Tables

B.1 Proposed Schedule of Thesis Milestones 82

10

Chapter 1

Introduction: Contributions and
Motivation

1.1 Contributions

To date, sketch recognition systems have been domain-specific, with the recognition
details of the domain hard-coded into the system. A domain-independent recogni-
tion system is advantageous since it may be used for several domains, increasing the
flexibility and capabilities of a system. In order to recognize a sketch in a particular
domain, domain-specific information must be supplied to the domain-independent
recognition system.

In this thesis proposal, we propose a description language used to describe domain-
specific information to a domain-independent sketch recognition system. A domain
description, written in the language, will include the domain-specific information
necessary to enable sketch recognition in the domain. A domain description includes
geometric descriptions of the shapes and shape interactions in the domain, as well as
other information that is helpful to the recognition process, such as stroke order or
stroke direction.

Domain descriptions specify how shapes and shape interactions in the domain are
drawn, as well as how the shapes should be displayed and edited after recognition.
Display information is necessary because the strokes remain visible to the user long
after they are drawn and recognized. Editing behavior is important because the same
gesture of the mouse may specify the drawing of a shape or an editing gesture, and
the recognition system must be able to discriminate between the two.

The language will consist of pre-defined shapes, constraints, editing behaviors,
and display methods, as well as a syntax for specifying a domain description and
extending the language. The difficulty in this task is determining what is useful to
include in the language. We want domain descriptions to be easy to specify, and we
want the descriptions to provide enough details for accurate sketch recognition.

11

1.2 Motivation

Sketching interfaces have become more popular; a number of sketch-based applica-
tions are described in the Section 2. These applications require sketch recognition
to process the strokes. Currently, although some of the shapes and sketch recogni-
tion algorithms in these domains are similar, distinct applications re-implement these
similar sketching algorithms, causing the creation of a new sketching interface to be
a time-consuming process. If there were one domain-independent recognition system
that could be used with many domains, creating new applications would be simpler
because the sketch recognition code would not have to be re-implemented each time.

A domain-independent recognition system would be able to recognize shapes from
different domains. The domain-independent recognition system would not know how
to recognize all possible shapes. Rather, the domain independent recognition system
could recognize certain shapes, and allow users to use these shapes to hierarchically
describe how to recognize other shapes.

Programmers would then be able to create new sketching interfaces simply by
describing the domain specific information, including the shapes to be recognized in
the domain. The domain-independent sketch recognition system would then recog-
nize based on these descriptions. The programmer would not have to write sketch
recognition code and could focus on other details of software development.

In order to use this domain-independent sketch recognition system, there must
be some way to describe the elements of a domain. This thesis proposal proposes a
domain description language to describe shapes in a domain. The language should
have an intuitive syntax, allowing programmers to define domains quickly, logically,
and intuitively. The language must also have the appropriate primitives defined so
the programmer can specify the desired shapes or behaviors easily and without having
to define complicated new constraints to describe a shape.

Sketch recognition can be done by measuring features, such as stroke length,
curvature, timing, or other property of a sketched item. However, many of the features
used to recognize sketches in other systems place requirements on the user to draw
objects in a single stroke and in a particular direction, and the features are not
necessary correlated with the shape of the drawn object. By allowing domain elements
to be described by their shape, we not only ensure correlation between the drawn
shape and the recognized shapes, we also enable users to draw the shapes as they
would naturally.

The sketch recognition language will allow a programmer to describe how shapes
in the domain are drawn, as well as how these shapes are displayed and edited once
recognized. The language is based primarily on shape, but details other than shape
may be used to describe the drawing process and help recognition. For instance, since
error is prevalent, we may wish to specify how much error is acceptable. Perhaps in
one domain, we require our circles to be almost perfect, and in another domain
anything that closely resembles a circle should be recognized as such. In sketch
recognition, the order or direction of strokes may be important and/or helpful to
recognition. For instance if we were to describe the Graffiti language for text input,
we would need a way to specify the direction of the stroke. When describing shapes

12

in the language, users should describe them as if the users drew perfectly. The signal
noise will be discovered and removed by the recognition system.

We look to two domains for ideas on how to describe sketched shapes: speech
recognition and computer graphics. In speech recognition, domain-independent speech
recognizers have been developed. Rather than words, recognition is based on phonemes.
The recognized words and phrases of a domain are listed using a grammar. Inter-
nally, the words are broken down into phonemes for recognition. Ideally, a domain
description for a sketching interface would be describable like a domain description
for a speech interface (commonly called a speech grammar). Unfortunately, sketching
is more complex than speech. In speech, there is a continuous flow of words, and we
can never go back to change the words we said. In sketching, the shapes drawn on the
paper remain on the paper and there is nothing to restrain us from adding another
stroke to an object drawn in the past.

The language will describe how shapes in a domain are drawn, displayed, and
edited. The shapes described are graphical objects, composed of arcs, curves, and
lines. Thus, it is fitting that we look to computer graphics for insight into the lan-
guage. Computer graphics provides us with standardized ways for describing how
shapes are displayed and edited. When describing display and editing inside the lan-
guage, we include standard graphics techniques, such as allowing shapes to be scaled,
translated, and rotated. Computer graphics may be useful in part for describing
how shapes are drawn. Its limitations include its inability to describe non-graphical
information, such as stroke order, that may be helpful in recognition.

13

Chapter 2

Review of Literature

2.1 The Birth and Death of Sketching Interfaces

Sketching interfaces have been around for a long time. Ivan Sutherland created the
Sketchpad system in 1963 on the TX-2 computer at MIT [44]. (See Figure 2-1.)
His system has been called the first computer graphics application. The system,
created before the invention of a mouse, provided the user with a light pen as an
input device. A user could create a complicated two-dimensional graphical scene
through a series of editing commands and primitive graphical commands. The light
pen was used in conjunction with keyboard input to allow users to create simple
graphical primitives, such as lines and circles, and editing commands, such as copy.
The keyboard could be used to place additional constraints on the geometry and
shapes. By defining appropriate constraints, users could develop structures such as
complicated mechanical linkages and them move them about in real time.

The Sketchpad system was based on vector graphics. Raster graphics, despite
its inability to produce the smooth continuous line available with vector graphics,
proved to have many advantages over vector graphics [16]. Computers based on raster
graphics had a much lower cost. Raster graphics also provided the ability to display

Figure 2-1: Ivan Sutherland and the Sketchpad system.

14

an area filled with solid colors or patterns. Most importantly, the refresh process for
raster graphics is independent of the complexity of the scene (where complexity is
based on the number of objects in the scene) and thus, because of the high refresh
rates available, any scene can be refreshed flicker free.

Vector graphics and its light pen were quickly superseded by raster graphics and
the ubiquitous mouse. Pen-based interfaces disappeared from mainstream computer
interfaces for many years, with the mouse being the most common input device for
graphical applications. Despite the many advantages of a mouse, a mouse is very
difficult to sketch with. It does not have the natural feel of a pen, nor does it provide
a pen’s accuracy. Because the mouse was difficult to sketch with, computer automated
design (CAD) systems were based on a mouse-and-palette user interface rather than
a sketching interface.

2.2 The Rebirth of Sketching Interfaces

In the last decade, we have seen pen based interfaces regain popularity. PDAs (Per-
sonal Digital Assistants) [39] such as the Palm Pilot [14] and the iPAQ Pocket PC
[26] entered the market. PDAs come with a stylus and a screen which can be sketched
on. With the influx of PDAs we have seen a growth of Graffiti type interfaces. Com-
panies such as Wacom [38] have created sketching tablets with a stylus treated like
a mouse for the desktop computer. Companies such as Mimio [9] have created elec-
tronic whiteboards, which consist of a regular whiteboard, a projector projecting the
drawn contents, and special markers acting as cordless mice. Tablet PCs [33, 38] now
allow users to sketch directly onto their laptop screens using a Wacom [38] pen.

Sketch-based interfaces are useful for a number of reasons. PDAs use a Graffiti
type interface to allow users to hand write their notes. PDAs are built to fit easily in
a pant pocket, but still provide the computer power and ease of use of a computer-
based organizer. Because of their small size, a traditional keyboard is not practical.
Handwriting recognition allows the pen to be used in place of a keyboard.

Many things are much more naturally input with a pen or sketch-based interface
than with a keyboard or mouse. The clunky-feeling of the mouse lacks the precision
of a pen based stylus. For many people, drawing architectural sketches or mechanical
engineering designs would be very difficult without a pen, and many of the CAD
systems lack the natural feel and spontaneity of a freehand sketch. Because of the
lack of free drawing available in a CAD system, many designers first sketch a freehand
diagram of their design before entering the design into a CAD program.

Most importantly, sketch-based interfaces are useful because people sketch, and
they prefer to sketch. When given the option between sketching a design or using a
mouse-and-palette tool, users will choose to sketch the design [25].

2.3 Sketch-based Applications

A myriad of applications with sketch-based user interfaces have been created for use
with pen-based input devices. Many sketching applications are based on a list of

15

domain symbols or icons; the user interacts with the system by drawing symbols in
the domain.

Originally the objects in these sketches were recognized using trained gesture
recognition. Rubine [37] was one of the first to implement trained gesture recognition.
The Rubine recognition engine recognizes objects statistically with the use of a linear
discriminator, which processes a single stroke and determines certain features of it.
The Rubine system does not break down the stroke into line segments or curves which
prevents the creation of a hierarchical multi-stroke system of recognition.

Landay [28] created SILK, a tool that allows users to sketch interactive user in-
terfaces. SILK was one of the first systems that recognized a sketch and allowed
interactive use of the sketch without replacing the strokes with cleaned-up strokes
and allowing the user to view and modify her originally drawn strokes. SILK and
many other systems were based on the Rubine recognition engine.

Denim, also by Landay [30], recognizes boxes and two link types to allow users
to sketch and design web pages. In Denim, the link types are differentiated not by
the geometrical properties of the drawn links, but rather by what the links connect.
Ligature [17], also based on link connections, is a sketch-based system for configuring
hardware connections in the MIT AI Lab Intelligent Room.

Edward Lank et al. built a UML recognition system that uses a distance metric
[29] which classifies strokes based on the total stroke length compared to the perimeter
of its bounding box. This algorithm can cause many false positives. (For example,
the letter M can be detected as a box.) Although the system does allow users to draw
somewhat naturally, it does not allow users to edit naturally. Users don’t sketch edits
to their diagrams, but rather use correction dialogue boxes.

Several other sketch recognition systems in other domains have also been devel-
oped. SketchIt [42] is another sketch-based user interface for designing mechanical
engineering designs. JavaSketchIt [7] is another sketch-based tool for GUI design in
Java. Quickset [36] is a sketch-based tool that enables multiple users to create and
control military simulations.

More recent systems have started focusing on shape-based recognition. Because
they are not based on training, they do not require a multitude of training examples.
By recognizing based on shape they ensure correlation between the object drawn and
the shape recognized. Shape based recognition also allows users to draw with multiple
strokes since strokes can be combined and examined, which would be impossible using
the Rubine engine. These systems also provide a basis for this thesis, since it shows
that shape based recognition is possible and can provide for accurate results. One
such system Tahuti [22, 23] is a sketch-based system for drawing software design.
Other systems, Assist [2] and Assistance [35] provide a sketch-based user interface for
designing mechanical engineering designs.

Many of the shapes in these domains are similar, and so are some of the sketch
recognition algorithms behind the icons. By creating a single recognition system,
many applications could share recognition code, thus reducing application creation
time. The domain independent recognition system could recognize certain shapes,
and allow programmers to use these shapes to hierarchically describe other shapes.

Programmers would then be able to create sketching interfaces by describing the

16

domain specific information, including the shapes to be recognized. The domain-
independent sketch recognition system would then recognize based on these descrip-
tions. The programmer would not have to write sketch recognition code and could
focus on other details of software development.

2.4 Sketching Languages Based on Shape

Several methods can be used to recognize shapes in a domain, including geometrical
shape, total time it takes to draw an object, and size of the bounding box of the
object. Features of the drawn object, such as the total time it takes to draw an
object and the size of the bounding box of the object, may require the object to be
drawn in one stroke, and these features don’t ensure correlation between the drawn
shape and the interpreted shape.

Quill [31] is a tool for designing gestures and gesture sets for pen-based user
interfaces. It exposes some information about the recognizer, and provides active
advice about how well the gestures will be recognized by the computer and how well
they will be learned and remembered by people. The recognizers for Quill are based
on features of the stroke. Thus when a gesture is taught to the system by a developer,
a user must draw the symbol in the same method, including stroke direction, order,
and speed, rather than recognizing the shape of the stroke, and allowing users to draw
shapes with their own individual natural style.

Our sketching language focuses on shape as opposed to other features, such as
drawing speed and size. This allows the domain-independent recognition system
to be based on shape, which ensures correlation between the drawn shape and the
recognized shapes. By recognizing based on shape, the recognition system will not
place single stroke requirements on the users, allowing users to draw the shapes as they
would naturally. Our language will allow programmers to specify how to recognize,
display, and edit the shapes of a domain.

Our language focuses on describing geometrically the shapes of the domain. Shape
description languages, such as shape grammars, have been around for a long time [43].
Shape grammars are studied widely within the field of architecture, and many systems
are continuing to be built using shape grammars [18]. However, shape grammars were
developed for shape generation rather than recognition, and don’t provide for non-
graphical information, such as stroke order, that may be helpful in recognition. They
also lack ways for specifying shape editing.

Within the field of sketch recognition, there have been other attempts to create
shape languages for sketch recognition. O. Bimber et. al [4] describe a simple sketch
language using a BNF-grammar. The language describes three-dimensional shapes
and how they are composed of other three-dimensional shapes. This language allows
a programmer to specify only shape information and lacks the ability to specify other
helpful domain information such as stroke order or direction and editing behavior
information.

Mahoney [32] uses a language to model and recognize stick figures. The language
currently is not hierarchical, making large objects cumbersome to describe. Caetano

17

et. al. [7] use fuzzy relational grammars to describe shape, but lack the ability to
describe non-shape based information.

The Electronic Cocktail Napkin project [20] allows users to define domain shapes
by drawing them. A shape is described by the shapes it is composed of and the
constraints between them. The Cocktail Napkin’s language is able to describe only
shape.

18

Chapter 3

Thesis Context - Other Projects of
the Design Rationale Group

The Design Rationale Group of the MIT AI Lab is developing a multi-domain recog-
nition framework in which the recognition system uses a blackboard architecture with
domain-independent recognizers. Domain-specific information is described in a do-
main description text file written in the domain description language syntax. The
domain description is compiled into recognizers for use by the blackboard. The do-
main description can be written by hand or generated automatically by a system
that learns shape descriptions from drawn examples [10, 24]. Figure 3-1 shows the
integration of domain specific information into the recognition system.

3.1 Domain-Specific Recognizers

A domain description text file (Figure 3-1-3), written using the syntax of the domain
description language (Figure 3-1-1) [21], described in this thesis proposal, specifies
the domain-specific information needed by the recognition system. The language
consists of pre-defined shapes, constraints, and editing behaviors, as well as a syntax
for specifying a domain description. Shapes in a domain can be defined hierarchically,
and although the language is primarily based on shape, the domain description can
include other information that would be helpful to the recognition process, such as
stroke order or direction. It can also specify editing behaviors and display information.

Domain descriptions can be written by hand or generated automatically by a
system that learns shape descriptions from one or two examples (Figure 3-1-2) [45].
That system uses knowledge about human perception to determine which properties
and constraints are relevant.

Domain-specific recognizers (Figure 3-1-5) are generated automatically from the
domain description by a compiler (Figure 3-1-4) [40]. The recognizers are in the form
of human readable recognition code and data structures. They create templates to
help identify partial recognitions which can resume recognition when more data is
available.

19

Figure 3-1: Multi-Domain Sketch Recognition System.

3.2 Domain-Independent Recognizers

Domain-independent recognizers (Figure 3-1-6) can be used for low-level stroke recog-
nition [41]. In low-level stroke recognition, strokes are processed and broken down
into lines, circles, poly-lines, and complex shapes. Corners are found using speed and
curvature data.

Domain-independent recognizers also may process speech events. Some things are
more easily specified by drawing and others by speech. Speech recognizers allow users
to communicate sketch information more naturally.

3.3 Blackboard Recognition Architecture

The recognition system (Figure 3-1-7) is based on a blackboard architecture in which
available information is posted on a blackboard [3]. Knowledge sources, which are in
our case domain-independent and domain-specific recognizers, search the board for
information that they can process. The system integrates top-down and bottom-up
recognition to combine both contextual and shape information. The system handles
ambiguity through the use of a Baysian network.

20

Chapter 4

Sketching Domains

Sketching is a natural interface for many domains. For instance, software design
diagrams (UML, flow charts), course of action diagrams, finite state machines, music
notation, and mechanical engineering diagrams are often drawn by hand on paper.
Currently, input of these diagrams into the computer is done using CAD or CASE
software that can be clumsy a nonintuitive; thus these designs are only input into the
computer when necessary. The ideal or most natural input of these diagrams would
be as they were first completed, through hand-drawn sketching.

Sketching interfaces are not yet prevalent in the market because of the large
amount of time it takes to create an application with a sketch interface. Currently,
each sketch interface must be programmed separately, with recognition code rebuilt
for each system. We contrast sketching with speech, where interfaces are developed
rather quickly by writing a speech grammar used with a domain-independent speech
recognition system.

We would like to allow users to write a sketch grammar that describes how shapes
in a domain are drawn, displayed, and edited in the domain. This sketch grammar
would then be coupled with a domain-independent sketch recognition system that
could process this sketch grammar to create a sketch interface for an application.

Our goal is to develop a sketching language with which sketch interface devel-
opers can describe a sketch grammar. The sketch language will contain pre-defined
shapes, constraints, display methods, and editing behaviors, to be used in the shape
descriptions. The sketch language will also provide a syntax for describing shape
descriptions.

4.0.1 Types of Domains

The focus of our work is on domains that contain iconic shapes that can be described.
For instance, finite state diagrams are composed of circles and lines. Mechanical
engineering diagrams are contain bodies, motors and pin joints. Java GUIs contain
buttons and list boxes.

Our technique does not work well with domains for which we do not know ahead
of time all of the elements that will be in the design. Nor does it work well if there is
no a standard shape associated with an element. For instance, it could not be used

21

to recognize an artists (such as Monet) rendition of a Forest.
We list in this chapter several examples of domains for which our technique could

be successfully applied.

4.1 Software Design: UML (Unified Modeling Lan-

guage)

The Unified Modeling Language (UML) is a notation for drawing software diagrams.
It is the industry-standard language for specifying, visualizing, constructing, and
documenting the artifacts of software systems.

Figure 4-1: Sketched picture of a UML Class Diagram of a Blackjack Program

The UML provides a way for diagraming and describing programs written using
object oriented techniques. The UML defines nine types of diagrams [1]:

class diagrams: Class diagrams describe the static structure of a system, or how
it is is structured rather than how it behaves. These diagrams include classes,
represented by circles and rectangles, and associations, represented by lines and
arrows.

22

Figure 4-2: Interpreted picture of the UML Class Diagram of a blackjack program
shown in Figure 4-1

object diagrams: Object diagrams describe the static structure of a system at a
particular time. Whereas a class model describes all possible situation, an
object model describes a particular situation. These diagrams contain objects,
represented by rectangles, and links, represented by arrows.

use case diagrams: Use case diagrams describe the functionality of a system, in-
cluding human users and other systems. These diagrams include actors, repre-
sented by stick figures, and use cases, represented by ellipses, rectangles, lines,
and arrows.

sequence diagrams: Sequence diagrams describe interactions among classes. These
interactions are modeled as exchanges of messages. These diagrams include
class roles, represented by rectangles, lifelines, represented by dotted lines, ac-
tivations, represented by rectangles, and messages, represented by arrows.

collaboration diagrams: Collaboration diagrams describe interactions among classes
and associations. These interactions are modeled as exchanges of messages be-

23

tween classes through their associations. These diagrams include class roles,
association roles, and message flows, represented by arrows.

statechart diagrams: Statechart diagrams describe the states and responses of a
class. These diagrams include states and transitions.

activity diagrams: Activity diagrams describe the activities of a class. These dia-
grams include swimlanes, actions states, actions flows, and object flows.

component diagrams: Component diagrams describe the organization of and de-
pendencies among software implementation components. These diagrams con-
tain components, which represent distributable physical unites, including source
code, object code, and executable code.

deployment diagrams: Deployment diagrams describe the configurations of pro-
cessing resource elements and the mapping of software implementation com-
ponents onto them. These diagrams contain components and nodes, which
represent processing or computational resources, including computers, printers,
and so forth.

Tahuti [22] is a system for sketching UML class diagrams. Figure 4-1 shows a
hand drawn diagram of a UML class diagram. Figure 4-2 shows the same diagrams
cleanly drawn. The domain description for UML class diagrams is found in the
Section A. The text in this system and others described in this chapter are entered
by the keyboard.

4.2 Software Design: Flow Charts

A flow chart is defined as a pictorial representation describing a process being studied
or even used to plan stages of a project. A hand drawn flowchart depicting the logic
of a card game is shown in Figure 4-3 The basic flow chart symbols are shown in
Figure 4-4 [11]. Open headed arrows are used to designate process flow.

24

Figure 4-3: Sketch drawing of a flowchart software diagram for a card game.

Figure 4-4: Basic flow chart symbols [11].

25

4.3 Java GUIs

SILK [28] is a sketch-based tool for GUI design. JavaSketchIt [7] is another sketch-
based tool for GUI design in Java. Java GUIs are the front-end of a Java program.
They are usually first hand drawn during the design process. Figure 4-5 is a hand
drawn diagram of a java gui. In the diagram, the squiggly lines represent text. The
box-shaped items at the top represent menu items. The box with the arrow pointing
down represents a list box. The double edged box represents a button. The diagram
also contains radio boxes, check boxes (with some of them checked), and a text box.

Figure 4-5: Hand drawn diagram of a java gui.

4.4 Web Pages

Denim [30] is a sketch-based tool for developing web sites. Figure 4-6 shows a hand
drawn webpage design. Text is represented by squiggles. Pictures are represented by
boxes. Links between pages are represented by arrows.

26

Figure 4-6: A website design, with the links represented as arrows.

4.5 Finite State Machines

Figure 4-7 shows a hand drawn diagram of a finite state machine. States are rep-
resented by circles. Transitions are represented by arrows. The finite state machine
displayed accepts strings with an even number of A’s and B’s.

Figure 4-7: A finite state machine accepting strings with an even number of A’s and
B’s.

4.6 Organizational Charts

Organizational charts represent the administrative layout of a company. The diagrams
are drawn with rectangles and lines. Figure 4-8 shows part of the MIT administration
organizational chart.

27

Figure 4-8: MIT Administration Organizational Chart.

4.7 Calendar Notation

[27] presents a way of annotating your daily calendar in using hand drawn sketching.
Figure 4-9 is a snapshot from this application where a start marks an appointment as
important on the calendar. In Figure 4-10 an arrow is hand drawn on the calendar to
signify that an appointment should be moved to a different day. Figure 4-11 shows
the possible shapes that can be drawn when annotating a calendar.

Figure 4-9: A star marks an appointment as important on the calendar.

28

Figure 4-10: The arrow reschedules the appointment for a different time.

Figure 4-11: The shapes used to mark a calendar.

4.8 Device Connections

Ligature [17] is a user interface that supports the configuration of device connections
of the E21 Intelligent Room in the MIT AI Lab. Ligature shows the user a map
of video sources and displays in the Room and allows her to change how they are
connected with pen gestures. Ligature works together with Metaglue[8], the multi-
agent software system for the Intelligent Room, to hide the complexities of device
control, resource management, and other technical details of the IE from the user.
Figure 4-12 shows the Ligature system.

Figure 4-12: The Ligature system used in the MIT AI lab.

29

4.9 Mechanical Engineering

Mechanical Engineering diagrams can be drawn containing bodies, motors, gravity,
wheels, pullies, and other mechanical entities. Figure 4-13 shows a hand drawn car on
a hill using ASSIST [2]. The arrow pointing down represents gravity. The drawing is
interpreted by the recognition system and run using Working Model. The interpreted
view is shown in the same picture.

Figure 4-13: ASSIST: A Shrewd Sketch Interpretation and Simulation Tool.

4.10 Circuit Diagrams: Digital and Analog

Both digital and analog circuit diagrams can be sketched and recognized by a com-
puter. Figure 4-14 is a picture of a digital circuit. Figure 4-15 shows a picture of an
analog circuit.

30

Figure 4-14: Digital Circuit

Figure 4-15:

31

4.11 Course of Action Diagrams

Course of Action Diagrams are used by the military to plan and depict battles. They
are military planning diagrams that depict unit movements and tasks in a given re-
gion. COA diagrams are usually hand drawn by the military, and these sketches have
been successfully recognized [15]. Quickset [36] is a sketch-based tool that enables
multiple users to create and control military simulations. A sample COA diagram is
found in Figure 4-16. Figure 4-17 show a few of the symbols found in course of action
diagrams. Course diagrams can consists of many more symbols than are depicted
here.

Figure 4-16: Course of Action Diagram [34].

32

Figure 4-17: Samples of a few shapes found in Course of Action diagrams.

4.12 Map Creation

Maps consist of many standard symbols that can be recognized using our technique.
Figure 4-19 and Figure 4-18 show some hand drawn maps that could be recognized.

Figure 4-18: Hand drawn maps a Yukon Hostel and of Watervale.

33

Figure 4-19: Hand drawn maps of Livingston and San Pedro.

4.13 Chemical Notation

Figure 4-20 is a hand drawn chemical symbol. Atomic elements are represented by
letters. Chemical bonds are represented by lines. The compound drawn in Figure 4-20
is ethanol.

Figure 4-20: The chemistry symbol for ethanol.

4.14 Graffiti

Graffiti is a language for hand writing text [39]. The language was created to make
sketch recognition simpler. We can also describe Graffiti using the language described
in this thesis. Graffiti is used on Palm Pilots and other PDAs. Graffiti has grown in
popularity over the years and have been used to describe a multitude of other texts,
such as Greek letters in Figure 4-21 and the Mongolian alphabet in Figure 4-22.

34

Figure 4-21: The Greek alphabet in Graffiti.

Figure 4-22: The Mongolian alphabet in Graffiti.

4.15 Sheet Music

Sheet music is commonly written by hand first, then entered into the computer later.
Rather the music could be hand drawn, and the computer could recognize the notes
as they were drawn. Figure 4-23 shows two examples of hand drawn music.

35

Figure 4-23: Hand drawn sheet music.

4.16 Dance Choreography: Benesh

Benesh notation is one of the two most common devices for noting dance choreog-
raphy. Benesh uses notional orthogonal projection of the figure onto a frame on a
music-like stave [6]. Each frame is embellished with signs representing detail about
positions and movements of the various parts of the body. The frames may be viewed
as a series of snapshots of the figure in time. Thus each frame has an analogue repre-
sentation of left-right and up-down movement. It also has an analogue representation
of forward-back movement using the foreshortening of fixed length limbs, and a sim-
ple binary symbol to show if the foreshortening is due to the limb being in front of
or behind the coronal plane.

Figure 4-24 shows a Fouette-en-Tournant in Benesh notation. In this Figure, the
drawn dancer is initially standing facing downstage left on a bent left leg, the right
leg extended in front. The right leg is swung to the side and then brought in rapidly
as the figure rise on point, and then pirouettes.

Figure 4-24: A Fouette-en-Tournant in Benesh notation.

4.17 Dance Choreography: Labanotation

Labanotation is the other of the two most common devices for noting dance choreog-
raphy. Labanotation as a system for recording and analyzing human movement was
first published by Rudolf Laban in 1928 [6]. His analysis of movement is based on

36

spatial, anatomical, and dynamic principles. In Figure 4-25, the Parts Girl illustrates
some of the symbols used to represent body parts in Labanotation.

Figure 4-25: A figure illustrating the parts of a dancer in labanotation.

Labanotation has time running continuously up the page. The vertical length and
positioning of a symbol represent when and for how long the action occurs. Different
columns of the vertical stave represent different parts of the body. Additional signs
can be added to represent additional detail.

LabanPad contains a handwriting recognition algorithm specialised in Labanota-
tion. As the user writes down Labanotation symbols using a pen, they are analysed,
tokenised and clearly displayed [19]. Figure 4-26 shows a sample of a hand drawn
dance motion in labanotation that is recognized using LabanPad.

Figure 4-26: A hand drawn dance motion in Labanotation on the left and its cleaned
version on the right as recognized by LabanPad [19].

4.18 Sports Games: Football

Figure 4-27 is a football play diagram. Players are represented by circles and their
motion is represented by arrows. In this diagram, the play starts with the QB (quar-
terback) reversing out and handing off to the RB (runningback). The quarterback QB
sprints to the left and fakes a pass, hopefully freezing a defender for a moment. The
center and guard double-team the nose guard, with FB (fullback) Cameron Hamilton
providing the key block by taking on the linebacker. RB reads FB’s block and goes

37

inside or toward the sideline. If the linebackers start cheating on the run, QB will
keep the ball and look for the TE (tight end) over the middle or a WR (wide receiver)
going deep.

Figure 4-27: A football play diagram.

4.19 Sports Games: Basketball

Figure 4-28 is a basketball play diagram for zone offence. In this diagram, the players
are represented by open circles with numbers inside. The ball is represented by a
smaller filled in circle. The motion of the players is represented by arrows. The
motion of the ball is represented by dotted arrows. In Figure 4-28 player 1 begins
the attack with a pass to a wing (player 5). Player 5 then passes to player 4 who
has moved to the corner, player 3 moves to the ballside high post, and player 2 drops
down to take a low post on the offside.

38

Figure 4-28: A basketball play diagram for zone offense.

4.20 Sports Games: Baseball

Figure 4-29 is a diagram of a baseball play of a pitcher covering first base. Circles
represent the players in the field. Triangles represent players at bat. A squiggle
arrow is the direction of the hit ball. An arrow is the direction of the movement of
the players. A dotted arrow is the throwing of the ball.

Figure 4-29: Baseball play of pitcher covering first base.

The Figure 4-29 suggest the following: The first base should be a good distance
off the plate in order to cover more territory. If a ball is hit to him and he is unable
to get to first in time the pitcher should cover first base. On any hit ball to the right
side the pitcher should move in direction of first base. The pitcher should run towards
first base. The first baseman tosses ball underhanded to pitcher, tossing ball before

39

pitcher gets to first, leading the pitcher with the toss. The pitcher should run past
the base, running on the inside to the base.

4.21 Interior Design

Figure 4-30 shows the interior design of a bathroom. Notice that there are several
standard symbols, such as that of the toilet, and the tub that could be recognized
using the technique described in this proposal. Figure 4-31 shows the interior design
for an entire floor. We again see the standard symbols present in the bathroom, but
we also see other symbols in other room such as sofas, tables, chairs, and beds.

Figure 4-30: The interior design of a bathroom.

40

Figure 4-31: The interior design of an entire floor.

4.22 Architecture

Ellen Do recognizes architecture sketches in her work [13]. Architecture sketches
contain repeated and symbols as well as specialized structure that can be used in
recognizing these sketches.

Sketch VR [12] is a pen-based interface that recognizes simple geometric shapes
in a two-dimensional view. To create an architectural space you draw lines and
circles in a simple ’cocktail napkin’ sketch to indicate the placements of walls and
columns. You select different colors for the elements you draw and the 3D world is
created accordingly. Similarly, you can generate 3D models of interior by drawing
diagrams to indicate furniture placements. Figure 4-32 shows a hand drawn virtual
reality scene. Notice that the circle surrounded by four squares represents a table and
chairs. The same Figure shows several views of the drawn diagram as interpreted by
Sketch VR.

41

Figure 4-32: A hand drawn virtual reality scene and several views of the virtual reality
scene created by Sketch VR.

42

Chapter 5

Language

This thesis proposal proposes a domain description language to describe the domain-
specific details for a sketch recognition system. The language is based on shape,
although non-shape information, including display and editing behaviors, can also be
specified. The language will consist of pre-defined shapes, constraints, editing behav-
iors, and display methods, as well as mechanisms for specifying a domain description
and extending the language. The power of the language is derived from carefully
chosen predefined building blocks. An example of a description for an OpenArrow
(Figure 5-1) is in Figure 5-2.

Figure 5-1: An open arrow.

The next few pages will document the current state of the language. Many ques-
tions still exist, including proper syntax and components of the language. The answers
to these questions will be fleshed out through the completion of the thesis.

5.1 Pre-Defined Shapes

The language will include a number of predefined primitive and non-primitive shapes
used in defining other shapes. Non-primitive shapes can be described hierarchically
using the primitive shapes; they are included as syntactic sugar to simplify shape
descriptions. The primitive shapes are Shape, Point, Path, Line, BezierCurve,
and Spiral.

To choose these primitive shapes, we examined the domains listed in Section 4.
We completely described the shapes in a number of domains, including Benesh dance
notation, sheet music, and UML class diagrams. We also partially described the
shapes in the domains of Course of Action diagrams and Mechanical Engineering.
We found that all of the shapes that we examined could be made up of the primitives

43

(define sketch-shape OpenArrow

(description "An arrow with an open head")

(components

(Line shaft)

(Line head1)

(Line head2))

(constraints

(coincident shaft.p2 head1.p2)

(coincident shaft.p2 head2.p2)

(coincident head1.p2 head2.p2)

(equal head1.length head2.length)

(ccAcuteMeet head1 shaft)

(ccAcuteMeet shaft head2)

(aliases

(Point head shaft.p2)

(Point tail shaft.p2)

)

(display

(original-strokes)

)

)

Figure 5-2: The description for an arrow with an open head

chosen. Ellipses and arcs we found to be common shapes, but we were able to define
them using the primitive shape Spiral. We defined Spirals such that an ellipse is
a specialized Spiral where the growth-factor is equal to 1. Spirals have a starting
length and a width to allow for stretched out spirals, such as the one shown in
Figure 5-3.

Figure 5-3: A hand drawn spiral.

Since some common shapes may be clumsy to describe using only the primitive
shapes, several other predefined shapes are defined. These include, among others,
Ellipse, Circle, and Rectangle

The OpenArrow in Figure 5-2 is composed of three primitive shapes. The lan-
guage uses an inheritance hierarchy; Shape is an abstract shape which all other
shapes extend. Shape provides a number of accessible components and properties
for all shapes, including boundingbox, centerpoint, width, height, and time. Each
predefined shape also has additional accessible components and properties, for exam-
ple, for a Line these include p1, p2 (the endpoints), midpoint, length, angle, slope,

44

and y-intercept. Accessible components and properties for a shape can be used in
shape descriptions containing that shape. When defining a new shape the accessible
components and properties are those defined by Shape, and those defined by the
components and aliases section. The accessible properties of the primitive shapes
are defined within the recognition system. The accessible properties of non-primitive
shapes are pre-defined in the language’s syntax.

The pre-defined shapes are:

Shape

The abstract shape that all shapes extend. The accessible properties for all
shapes are bounding-box, which is the smallest rectangle parallel to the horizon
that can be placed around the shape, center-point, which is the center of the
bounding-box, width, the height of the bounding-box, height, the width of
the bounding-box, and time, the time when the shape was completed. Time
is included to allow constraints to specify stroke order or direction.

Point

A point. The accessible properties are the x and y values of the point.

Path

A continuous stroke, not necessarily straight. The accessible properties are
start-point, end-point, length and num-loops.

Line

A straight line. The accessible properties are start-point, end-point, midpoint,

length, slope, y-intercept, and angle. The angle is between 0 and 360,
and is the angle between a directional horizontal line pointing to the right and
the Line directed from start-point to end-point. All Line’s are also Paths.

BezierCurve

A curve defined by four points, its two endpoints and two control points. The
accessible properties include start-point, end-point, control-point1, and
control-point2.

Spiral

A spiral starting from one angle and radius, ending at another. The radius
continually gets larger or smaller throughout the spiral, with the amount spec-
ified by the grow-factor. There is a start angle and end angle specified
for the spiral. The center of the spiral is the rotation point. The accessi-
ble properties are start-point, end-point, center-point, start-angle,

end-angle, large-radius, small-radius, num-loops, degrees, and grow-factor.
degrees = end-angle − start-angle, which may be larger than 360 if the spi-
ral includes several loops, and the number of loops, num-loops, equals degrees
/ 360.

ClosedPath

A path in which the last point is at the same point as the first, making a loop.
This shape is an extension of Path and has the same accessible properties.

45

Polygon

A closed path comprised of line segments, and containing the same accessible
properties as a Closed Path.

EllipseArc

An arc, a portion of an ellipse. This is also a Spiral where the grow-factor

is equal to 1. This contains the same accessible properties as a Spiral. If the
end-angle - start-angle >= 360, the entire ellipse is drawn.

Ellipse

An ellipse in any orientation. This is an ellipse defined by the four points of
a rectangle surrounding it. An Ellipse is a specific form of an EllipseArc

where end-angle - start-angle equals 360. It includes the same accessible
properties as the EllipseArc.

Circle

A circle. This is the same as an ellipse where radius1 = radius2. The acces-
sible properties include center-point and radius.

Triangle

A triangle. The accessible properties include the three points of the triangle
point1, point2, and point3.

Rectangle

A rectangle in any orientation. The accessible properties include the four lines
of the rectangle: line1, line2, line3, line4 and center-point, width,

height, and rotation. The rotation defines the angle between the horizontal
plane and the line denoting the width of the rectangle.

RoundedRectangle

A rectangle with rounded corners. The accessible properties are the same as a
Rectangle.

Square

A rectangle where the height and width are equal. The accessible properties
are the same as a Rectangle.

5.2 Pre-defined Constraints

New shapes are defined in terms of previously defined shapes and constraints be-
tween them. For instance, the OpenArrow in Figure 5-2 contains the constraint
(ccAcuteMeet head1 shaft), which ensures that head1 and shaft meet at a point
and form an acute angle in a counter-clockwise direction from head1 to shaft.

A number of predefined constraints are included in the language, such as perpendicular.
If a sketch grammar consists of only the constraints above, the shape is rotationally
invariant. There are also predefined constraints that are valid only in a particular ori-
entation, such as posSlope. There is an additional constraint: isRotatable, which

46

implies the shape can be found in any orientation. If isRotatable is specified along
with an orientation-dependent constraint, there must be an angle, horizontal, or
vertical constraint specified, which serves to define the orientation and set a relative
coordinate system.

A number of predefined constraints are included in the language to facilitate shape
definitions.

horizontal line
line is a horizontal line. The slope of the line is 0.
Orientation Dependent

vertical line

line is a vertical line. The slope of the line is undefined.
Orientation Dependent

posSlope line

line has a positive slope. Both the x-value and the y-value of one endpoint of the
line are less than the x-value and the y-value of the other endpoint.
Orientation Dependent

negSlope line

line has a negative slope. The x-value of p1 is less than the x-value of p2 and the
y-value of p1 is greater than the y-value of p2, where Point p1 and Point p2 are the
two endpoints.
Orientation Dependent

leftOf point1 point2

point1 is to the left of point2 on the screen. The x-value of point1 is less than
the x-value of point2 . This is the same as (rightOf point2 point1), unless they
share the same x-value.
Orientation Dependent

rightOf point1 point2

point1 is to the right of point2 on the screen. The x-value of point1 is greater
than the x-value of the point2 . This is the same as (leftOf point2 point1), unless
they share the same x-value.
Orientation Dependent

above point1 point2

point1 is above point2 on the screen. The y-value of point1 is less than the y-value
of point2 . This is the same as (below point2 point1), unless they share the same
y-value.
Orientation Dependent

below point1 point2

point1 is below point2 on the screen. The y-value of point1 is greater than the
y-value of point2 . This is the same as (above point2 point1), unless they share
the same y-value.
Orientation Dependent

47

sameHPos point1 point2

point1 and point2 have the same horizontal position, i.e., they share the same x-
value. This implies that (above point1 point2) and (below point1 point2) are
both false.
Orientation Dependent

sameVPos point1 point2

point1 and point2 have the same vertical position, i.e., they share the same y-
value. This implies that (leftOf point1 point2) and (rightOf point1 point2)
are both false.
Orientation Dependent

aboveLeft point1 point2

(above point1 point2) AND (leftOf point1 point2)
Orientation Dependent

aboveRight point1 point2

(above point1 point2) AND (rightOf point1 point2)
Orientation Dependent

belowLeft point1 point2

(below point1 point2) AND (leftOf point1 point2)
Orientation Dependent

belowRight point1 point2

(below point1 point2) AND (rightOf point1 point2)
Orientation Dependent

centeredBelow point1 point2

(below point1 point2) AND (sameVPos point1 point2)
Orientation Dependent

centeredAbove point1 point2

(above point1 point2) AND (sameVPos point1 point2)
Orientation Dependent

centeredLeft point1 point2

(leftOf point1 point2) AND (sameHPos point1 point2)
Orientation Dependent

centeredRight point1 point2

(rightOf point1 point2) AND (sameHPos point1 point2)
Orientation Dependent

isRotatable [shape]
The shape can be found in any orientation. If any Orientation Dependent constraints
are listed for this shape, it must have a line defined with a particular angle (using one
of the following constraints: angle, horizontal, or vertical). For example, the
two ccAngleMeet constraints in the OpenArrow from Figure 5-2 could have been
replaced with:

48

(isRotatable)

(horizontal shaft)

(posSlope head1)

(negSlope head2)

(leftOf shaft.p1 shaft.p2)

(leftOf head1.p1 shaft.p2)

(leftOf head2.p1 shaft.p2),

in which case the shape is first rotated to make the shaft horizontal, and then the
rest of the constraints are checked.

ccAngleD line1 line2 degrees

Both lines have their two endpoints labelled point1 and point2. line1 is a directional
line extending from point1 to point2. line2 is a directional line extending from point1
to point2. The angle between line1 and line2 is measured in a counterclockwise
direction when line2 is translated such that point1 of line2 and point1 of line1
are in the same location. degrees specifies the number of degrees between the two
lines when traversing from line1 to line2 in a counter clockwise direction. For each
set of two lines, there is only one possible value between 0 and 360 that could be true.

ccAngle line1 line2 degrees

line1 and line2 are not directional. The angle between line1 and line2 is mea-
sured in a counter clockwise direction when the lines are extended to infinity. degrees
specifies the number of degrees between the two lines when traversing from line1 to
line2 in a counterclockwise direction. For each set of two lines, there is only one
possible value between 0 and 180 that could be true.

ccAcute line1 line2

The angle between line1 and line2 when traversing counterclockwise, is an acute
angle, measured as in ccAngle, when the lines are extended to infinity.

ccObtuse line1 line2

The angle between line1 and line2 when traversing counterclockwise, is an obtuse
angle, measured as in ccAngle, when the lines are extended to infinity.

ccAcuteMeet line1 line2

The lines line1 and line2 meet at their endpoints and form an acute angle in the
counterclockwise direction from line1 to line2 .

ccObtuseMeet line1 line2

The lines line1 and line2 meet at their endpoints and form an obtuse angle in the
counterclockwise direction from line1 to line2 .

angle line degrees

This constraint specifies that the angle property of the line is degrees . A horizontal
line pointing to (from the start-point to the end-point) the right is defined to have
an angle of 0. A vertical line pointing up is defined to have an angle of 90. A horizontal
line pointing to the right is defined to have an angle of 180. A vertical line pointing
down is defined to have an angle of 270.
Orientation Dependent

49

perpendicular line1 line2

This specifies that two lines are perpendicular.

parallel line1 line2

This specifies that two lines are parallel.

collinear point1 point2 point3

This specifies that three points are on the same line.

sameSide line point1 point2

point1 and point2 are on the same side of line . If you draw a line between point1

and point2 , this new line does not cross line when line is extended to infinity.

oppositeSide line point1 point2

point1 and point2 are on the different sides of line . If you draw a line between
point1 and point2 , this new line crosses line when line is extended to infinity.

coincident point1 point2

This constraint confirms that two points are in the same location.

connected lac1 lac2

lac1 and lac2 are either lines, arcs, or curves. One endpoint from lac1 and one
endpoint from lac2 are coincident.

meet lac shape

lac is either a line, arc, or curve. One endpoint of lac intersects the strokes or lines
segments of shape .

intersect shape1 shape2

The strokes or line segments of the two shapes intersect.

tangent shape1 shape2

The borders of the two shapes touch, but do not intersect. The two shapes touch
(there is a point from shape1 and a point from shape2 that are coincident) but
they do not intersect. There must also be several points from shape1 that are not
coincident with any point from shape2 , and vice-versa.

contains shape1 shape2

The bounding box of shape2 is inside of shape1.

concentric shape1 shape2

The center of shape1 and the center of shape2 are coincident.

centered-in shape1 shape2

(contains shape2 shape1) AND (concentric shape2 shape1).

smaller shape1 shape2

The area of the bounding box of shape1 is smaller than the area of the bounding
box of shape2 .

50

larger shape1 shape2

The area of the bounding box of shape1 is larger than the area of the bounding box
of shape2 .

near shape1 shape2

shape1 is near shape2 . Near is usually on the order of 10-20 pixels although the
exact parameter is set by the recognition system.

draw-order shape1 shape2

shape1 was drawn before shape2 .

= value1 value2

This constraint compares two values to check if they are equal.

> value1 value2

This constraint checks if value1 is greater than value2.

or constraint1 constraint2

This constraint checks that at least one of the two constraints listed is true.

not constraint1

This constraint confirms that the constraint listed is not true.

5.3 Pre-defined Editing Behaviors

We need the ability to describe editing gestures so that the recognition system can
discriminate between sketching (pen gestures intended to leave a trail of ink) and
editing gestures (pen gestures intended to change existing ink), and because editing
behaviors are different in different domains.

In order to encourage interface consistency, the language will include a number of
predefined editing behaviors built using the actions and triggers above. The developer
can then choose to use these editing behaviors if she wishes. One such example is
ScribbleDelete, which defines that if you scribble-over the strokes of a shape, the
shape is deleted.

When defining a new editing behavior particular to a domain, there are two things
to specify: the trigger – what signals an editing command – and the action – what
should happen when the trigger occurs. For example, an editing description is defined
in Figure 5.3. In this description, a rectangle is moved along with the motion of pen
if the sketcher presses and holds the pen over the bounding box of the rectangle for
a brief time and then moves the pen.

The language has a number of predefined triggers and actions to aid in describing
editing behaviors. To give an example
(rubber-band shape-or-selection fixed-point move-point [new-point])

translates, scales, and rotates the shape-or-selection so that the fixed-point remains
in the same spot, but that the move-point translates to the new-point. If new-point
is not specified, move-point translates according to the movement of the mouse.
rubber-band is used in the editing definition in Figure 5.3. In this definition, if

51

(define sketch-edit MoveRectangle

(components

(Rectangle r)

)

(trigger

(click-hold-drag r.bounding_box)

)

(action

(move r)

)

)

(define sketch-edit MoveArrowTail

(components

(OpenArrow oa)

)

(trigger

(move oa.tail)

)

(action

(rubberband oa oa.head oa.tail)

)

)

the user moves the tail of an arrow, then the entire arrow will scale and rotate to to
ensure that the head remains fixed and the tail moves as necessary.

5.3.1 Triggers

The possible triggers include all those listed below as well as all of the actions listed
in the next subsection, allowing for “chain-reaction” editing.

click shape/selection

Click the mouse on a shape or selection .

double-click shape/selection

Double click the mouse on a shape or selection .

click-hold shape/selection

Click and hold down the mouse over a shape or selection for a time greater
than 0.4 seconds.

click-hold-drag shape/selection

Click and hold down the mouse over a shape or selection greater than 0.4
seconds, then move the mouse with the mouse button held down.

draw shape/shape-composition

Draw a particular shape or shape-composition .

52

pen-over shape/selection

Hold the pen over of an shape or selection . For instance, you may scaling
handles to appear if the pen rests over one of the corners of a rectangle.

draw-over new shape old shape/selection

Draw a new-shape on top of an old-shape or selection . For instance, you
may wish to draw an X over an object to signify deletion.

scribble-over shape/selection

Draw a scribble over a shape or selection . A scribble is defined as a back
and forth motion repeatedly crossing over an object.

encircle shapes

Draw a closed path around a group of shapes . This trigger may be used to
select a collection of shapes.

Any editing action
(listed in the Actions subsection)

5.3.2 Actions

Once the trigger occurs, any number of particular editing actions will occur. The
possible editing actions are listed below.

wait milliseconds

Wait for a certain number of milliseconds before doing the next action.

select shapes

Select the collection of shapes specified.

deselect selection

Deselect the collection of shapes specified.

color shape/selection color

Color the shape or selection a particular color .

delete shape/selection

Delete the specified shape or selection .

move shape/selection [x-shift y-shift]

If the x-shift and y-shift are not specified, then translate the specified
shape or selection according to the motion of the mouse. If x-shift and
the y-shift are specified, translate according to the amount specified.

rotate shape/selection fixed-point [amount]

Rotate the specified shape or selection the amount specified. Rotation oc-
curs around the fixed-point. If the amount is not specified, then rotate according
to the motion of the mouse.

53

scale shape/selection fixed-point [amount]

Scale the specified shape or selection the amount specified. The fixed-point
remains fixed, and the other points move to adjust to the scaling. For instance,
when dragging the bottom corner of a square the fixed-point could be the
upper corner of the square. If the amount is not specified, then scale according
to the motion of the mouse.

resize shape/selection width height

Resize the bounding box of the shape or selection specified to the width

and height specified. This is done by a combination of scale and translate
commands.

rubber-band shape/selection fixed-point move-point

Translate, scale and rotate the shape or selection specified so that the
fixed-point remains in the same spot, but that the move-point translates
according to the movement of the mouse, and the entire shape or selection
remains solid.

rubber-band shape/selection fixed-point old-point new-point

Translate, scale and rotate the shape or selection specified so that the fixed-point
remains in the same spot, but that the old-point translates according to the
location of the new-point and the entire shape or selection remains solid.

show-handle type point

Shows a specialized cursor handle at a particular point . The type can be
NORMAL, MOVE, SCALE, ROTATE, DRAG, PAINT, or TEXT.

5.4 Pre-defined Display Methods

Since the strokes remain viewable after they are drawn, the language can define what
should be displayed after a shape is recognized. For example, we can specify that the
original strokes should remain, or that the cleaned-version of the strokes should be
displayed. In the cleaned-version of the strokes, messy lines are replaced by straight
lines and messy curves are replaced by clean curves. Another option is to display the
ideal-version of the strokes. In this case, lines that are supposed to connect at their
end points actually connect and lines that are supposed to be parallel are actually
shown as parallel. In the ideal-version of the strokes, all of the noise from sketching
is removed.

It may be that we don’t want to show any version of the strokes at all, but some
other picture. In this case, there are two ways to proceed. We can create a picture
composed of circles, lines, rectangles and other shapes, specifying where each of the
components should be drawn on the screen. We can also place a .gif or .bmp picture
file at a specified location, size, and rotation.

Below are listed the pre-defined display methods available when defining how to
display a shape or its components after the shape is recognized. The arguments in
square brackets are optional.

54

original-strokes shape [color]

The original strokes of shape will be drawn in the color specified. If no color

is specified, they will be drawn in black.

cleaned-strokes shape [color]

Each of the original strokes of shape will be fit to a point, line, circle, arc,
polyline, and a complex shape. When displaying the cleaned strokes, each stroke
shape will be replaced by the best fit interpretation of those listed above. The
cleaned strokes will drawn in the color specified. If no color is specified, they
will be drawn in black.

ideal-strokes shape [color]

When shape is defined in the language, certain constraints are defined. For
instance, two lines may be constrained to meet at their endpoints. When dis-
playing the ideal strokes, shape will be drawn such that these lines actually
do meet at their endpoints. This method draws shape without any noise. The
ideal strokes will be drawn in the color specified. If no color is specified, the
shape will be drawn in black.

circle center-point radius [color]

This draws a circle specified by the radius and center-point . The circle will
be drawn in the color specified. If no color is specified, the circle will be
drawn in black.

line start-point end-point [color]

This draws a line from the start-point to the end-point in the specified
color . If no color is specified, the line will be drawn in black.

point x y [color]

This draws a point at the specified location in the specified color . If no color

is specified, the point will be drawn in black.

rectangle upper-left-corner-point lower-right-corner-point [color]

This draws a rectangle parallel to the window from the upper-left-corner-point
to the lower-right-corner-point in the specified color . If the color is
not specified, the rectangle will be drawn in black.

text string start-point size [color]

This draws a text string at the specified location. size specifies the size of the
font. If the color of the text is not specified, the text will be drawn in black.

image filename start-point [size] [rotation]

This draws the image in the specified filename at the specified location, size ,
and rotation . If size is not specified, the picture is drawn its original size.
If no rotation is specified, the rotation is set to 0.

55

Chapter 6

Specifying a Domain Description

The purpose of the language is to allow developers to describe the domain specific
information about the sketch recognition interface they would like to build. The do-
main specific information is specified in a domain description. A domain description
is built using the predefined shapes, constraints, editing behaviors, and display meth-
ods from Section 5 and using the syntax as specified by the language. The chapter
describes the syntax of a domain description.

A domain description contains a list of the domain shapes, shape interactions, and
editing behaviors in the language, as well as definitions for each of the shapes, shape
interactions, and editing behaviors described in the list. These shape descriptions can
be hierarchical and can refer to other shapes in the language.

In Section 4.1, UML (Unified Modelling Language) [5] class diagrams are de-
scribed. We can recognize UML class diagrams by writing a domain description,
which describes the shapes in the domain. The domain description for UML class
diagrams is specified in the appendix. We will use this domain to help illustrate
the concepts explained in this chapter, and refer to several examples in the UML
class diagram domain description throughout this chapter. Section 4.1 also includes
a sketched and interpreted picture of a UML class diagram for aid in understanding
these examples.

To create a domain description, one must specify the list of shapes and shape
interactions in the domain. One must also specify how each of the shapes and their
interactions are drawn, displayed, and edited.

A goal of the language is to allow inclusion into the domain description pertinent
information which describes the drawing process and may aid in recognition. A shape
definition includes primarily geometric information, but can include other drawing
information that may be helpful to the recognition process, such as stroke order or
stroke direction. With the addition of these constraints, the Graffiti language, such
as described in Section 4.14, can also be described using this language.

The language can also specify other information helpful to the recognition process,
such as constraints that usually occur, even if the recognition system should still
recognize this shape even if the shape does not satisfy this constraint. For instance,
it may be helpful to know that a particular shape is often drawn with a particular
stroke order. In this sense, we may wish to specify the popular stroke order. However,

56

since the shape may sometimes be drawn using a different stroke order, we may wish
to specify that this is a soft constraint, not a hard constraint.

6.1 Listing the Domain Shapes and Shape Inter-

actions

Domain descriptions include specifications of how domain shapes and shape interac-
tions are drawn, displayed, and edited. In this section we list the domain shapes and
domain shape interactions.

The domain shapes and their interactions are listed within the domain description,
so that the compiler can confirm that each shape is properly defined and can remove
definitions of unused shapes to provide faster and more accurate recognition.

6.1.1 Domain Shapes

A domain shape is a shape that is meaningful in the domain. Geometric shapes
usually occur in several domains and are the building blocks of the domain shapes.

For instance, in the domain of UML class diagrams, the domain shapes (followed
by their geometric components) are:

• UML Class (represented by a rectangle)

• UML Interface (represented by a circle)

• UML Interface Association (represented by a line)

• UML Dependency Association (represented by a open-headed arrow)

57

• UML Aggregation Association (represented by a diamond-headed arrow)

• UML Inheritance Association (represented by a triangle-headed arrow)

Each of these shapes should be recognized by the recognition system. Further
sections indicate how the language facilitates describing how these shapes are drawn,
as well as what should be displayed and how the shapes can be edited after they are
recognized.

6.1.2 List of Domain Shapes

For each domain, the sketch recognition system needs a list of the domain shapes
to be recognized; we call this list the list of domain shapes. This list is part of the
domain description.

The format for the list is:

(list sketch-domain-shapes domain-name
(shape-or-composition-name)pattern-expression
(shape-or-composition-name)pattern-expression
...

)

The domain-name is a variable specifying the name of the domain. The shape-or-
composition-name specifies the name of a shape or shape composition to be recognized
in the domain. The pattern-expression specifies how many times a domain object is
expected to occur in a particular sketch in the domain. For example, in mechanical
engineering, every diagram is expected to contain at most one symbol for gravity, and
in electrical engineering, every electrical circuit has at least one ground,

The pattern-expression can be either

1. * : specifying that a domain object can occur any number (0 or more) times in
the domain

58

2. positive integer n : specifying that a domain object will occur n times in the
domain

3. a positive integer n followed by a plus sign (+) : specifying that a domain object
will occur n or more times in the domain

4. a positive integer n followed by a minus sign (-) : specifying that a domain
object will occur n or fewer times in the domain

5. nothing : same as *

6. + : same as 1+

7. - : same as 1-

The example below shows the list of domain shapes for UML Class Diagrams
and indicates that there can be any number of each of the shapes in the UML Class
Diagram domain.

(list sketch-domain-shapes UML

(DependencyAssociation)*

(AggregationAssociation)*

(InheritanceAssociation)*

(InterfaceAssociation)*

(InterfaceClass)*

(GeneralClass)*

(Text)*

)

6.1.3 Domain Shape Interactions

A domain shape interaction describes a collection of shapes that are commonly found
together in the domain. Defining domain shape interactions provides two significant
benefits. Domain shape interactions can be used by the recognition system to pro-
vide top-down recognition and editing behaviors can by applied specifically to shape
interactions, allowing the movement of one shape to cause the movement of another.

In the domain of UML class diagrams, the domain shape interactions are:

• A UML General Class combined with a UML Association with the tail of the
arrow inside or near the UML General Class.

• A UML General Class combined with a UML Association with the head of the
arrow inside or near the UML General Class.

59

• A UML Interface Class combined with a UML Association with the tail of the
arrow inside or near the UML Interface Class.

• A UML Interface Class combined with a UML Association with the head of the
arrow inside or near the UML Interface Class.

• 2 UML General Classes combined with a UML Association with the head of the
arrow inside or near one UML General Class and the tail of the arrow inside or
near the other UML General Class.

• A UML General Class and a UML Interface Class combined with a UML Inter-
face Association with the tail of the arrow inside or near one UML Class and
the head of the arrow inside or near the other UML Class.

The shape interaction will be defined within the domain description, specified
later. We can define editing behaviors for the shape interaction, allowing the editing
of one shape to affect another. For instance, visually, UML Associations are attached
to UML Classes. When we move a UML Class, we would like the head or tail of the
UML Association attached to the UML Class to move with the class in a rubber band
fashion.

Further sections describe how the language facilitates the description of how these
shape interactions are drawn, as well as what should be displayed and how the shapes
can be edited after the shapes are recognized.

60

6.1.4 List of Domain Shape Interactions

For each domain, the sketch recognition system needs a list of the domain shape
interactions to be recognized.

The example below shows the list of domain shape interactions for UML class
diagrams.

(list sketch-domain-shape-interactions UML

(GeneralClassAssociationTail)*

(GeneralClassAssociationHead)*

(InterfaceClassAssociationTail)*

(InterfaceClassAssociationHead)*

(GGClassAssociation)*

(GIClassAssociation)*

)

6.2 Defining Shapes

A shape definition describes the geometrical properties of a shape. A shape definition
is composed of six sections:

1. The description contains a textual description of the shape, e.g., “an arrow with
a triangle-shaped head.”

2. The is-a section specifies any class of abstract shapes (Section 6.2.1) that the
shape may be a part of. This is similar to the extends property in Java. All
shapes extend the abstract shape Shape.

3. The components section lists the components of the shape, and describes which
shapes combine to form the shape. For example, the TriangleArrow in Fig-
ure 6-1 is composed of the OpenArrow from Figure 5-2 and a Line. Compo-
nents can be accessed hierarchically.

4. The constraints section specifies relationships between the components. For
example, in the TriangleArrow in Figure 6-1, (coincident head3.p1 head1.p2)
specifies that an endpoint of head3 and an endpoint of head1 are located at the
same point.

The constraints section can specify both hard constraints, such as the one listed
above, and soft constraints, which are specified by the keyword soft. Hard
constraints are always satisfied in the shape, but soft constraints may not be.
Soft constraints can aid recognition by specifying relationships that usually
occur. For instance, in Figure 6-1 the shaft of the arrow is commonly drawn
before the head of the arrow, but the arrow should still be recognized even if
this constraint is not satisfied.

5. The aliases section allows us to compute certain properties and name them for
use later. For instance, in Figure 6-1, head1 is defined and used in a constraint

61

for simplicity. Components specified in the aliases section can be accessed
hierarchically. For instance, TriangleArrow uses head and tail from the Ope-
nArrow in Figure 5-2.

6. A display section specifies what should be displayed on the screen when the
shape is recognized. This section is generally included only for domain shapes,
not for geometric shapes. In the UMLInheritanceAssociation in Figure 6-
2, the arrow will be displayed using straight lines for the arrow head and the
original stroke for the shaft.

(define sketch-shape TriangleArrow

(description "An arrow with a triangle-shaped head")

(components

(OpenArrow oa)

(Line head3)

)

(aliases

(Line shaft oa.shaft)

(Line head1 oa.head1)

(Line head2 oa.head2)

(Point head oa.head)

(Point tail oa.tail)

)

(constraints

(coincident head3.p1 head1.p2)

(coincident head3.p2 head2.p2)

(soft draw-order shaft head1)

(soft draw-order shaft head2)

)

)

Figure 6-1: The description for an arrow with a triangle-shaped head.

62

(define sketch-shape UMLInheritanceAssociation

(is-a UMLGeneralAssociation)

(components

(TriangleArrow arrow)

)

(aliases

(Point head arrow.head)

(Point tail arrow.tail)

(Line shaft arrow.shaft)

)

(display

(original_strokes arrow.shaft)

(cleaned_strokes arrow.head1 arrow.head2 arrow.head3)

)

)

Figure 6-2: The domain shape UML Inheritance Association is defined by the geo-
metrical shape TriangleArrow from Figure 6-1.

6.2.1 Defining Abstract Shapes

In the UMLInheritanceAssociation defined in Figure 6-2, the is-a section spec-
ifies that the UMLInheritanceAssociation is an extension of the abstract shape
UMLGeneralAssociation. Abstract shapes cannot be drawn and have no shape
associated with them; they represent a class of shapes that have similar attributes or
editing behaviors. These attributes can be defined once on the abstract shape rather
than for each domain shape.

An abstract shape is defined similarly to a regular shape, except it has a required
section instead of a components section. Each shape which extends the abstract shape
must define each variable listed in the required section, in its components or aliases
section.

Figure 6-3 presents a diagram of the inheritance hierarchy for the abstract and
non-abstract shapes in the UML class diagrams domain. In UML, UMLDependen-
cyRelationship, the UMLInheritanceRelationship, the UMLAggregationRe-
lationship, and the UMLInformationRelationship all have the same editing be-
havior, thus they are all UMLGeneralAssociations. The abstract shape UML-
GeneralAssociation from Figure 6-4 itself extends UMLAssociation from Fig-
ure 6-4; the required variables are used when defining editing behaviors.

63

Figure 6-3: The inheritance diagram of UML Class Diagram shapes.

(define sketch-abstract-shape UMLAssociation

(is-a Shape)

(required

(Point head)

(Point tail)

(Line shaft)

)

)

(define sketch-abstract-shape UMLGeneralAssociation

(is-a UMLAssociation)

)

Figure 6-4: The description for two abstract classes.

64

6.3 Defining Shape Interactions

A domain shape interaction describes a collection of shapes that are commonly found
together in the domain. For instance, in UML a UMLAssociation connects two
UMLClasses. Defining domain shape interactions provides two significant benefits.
Domain shape interactions can be used by the recognition system to provide top-
down recognition, and “chain-reaction” editing behaviors can be applied to shape
interactions, allowing the movement of one shape to cause the movement of another.
For instance if a UMLClass is moved, we want the UMLAssociation to remain attached
and stretch and rotate itself like a rubber band.

In the appendix, there are a large number of shape interactions defined be-
cause of the complicated rules involved in linking associations and classes. For in-
stance, a UMLAssociation can have zero or one UMLClass linked to its tail and can
have zero or one UMLClass linked to its head. There are additional rules stating
that a UMLGeneralAssociation can be linked only to a UMLGeneralClass, and a
UMLInterfaceAssociation must be linked to only one UMLGeneralClass and only
one UMLInterfaceClass.

If not specified otherwise, a drawn shape can be part of only one instance of a
shape composition. If a single drawn shape can be part of many instances of a shape
interactions, then we place the key word multiple before the component shape of the
shape composition. In UML Class Diagrams, a single drawn UMLAssociation can
only be part of one instance of a shape composition, while a single UMLClass can be
part of many instances of UMLGeneralClassAssociationTail.

The examples in Figure 6-6 and in Figure 6-5 describe one or two general classes
linked to a general association. Both inherit from the composed shape
UMLAssociationAttachedTail, described in the next section.

(define sketch-shape-interaction UMLGeneralClassAssociationTail

(description

"A general class attached to the tail of a general association"

)

(is-a

UMLAssociationAttachedTail

)

(components

(multiple (GeneralClass ct))

(GeneralAssociation r)

)

)

Figure 6-5: Description of the composed shape of an association attached to the tail
of a general class.

In Figure 6-7, we have an additional example describing a composed shape con-
sisting of a Force and an Object. In the mechanical domain, forces push objects.
Forces are represented by arrows and objects are represented by polygons. If a force
is said to be pushing an object, then an arrow is touching the polygon. The composed

65

(define sketch-shape-interaction UMLGenClassGenAssociation

(description

"A general association with the head and tail both attached to

a general class."

)

(is-a

UMLAssociationAttachedHead

UMLAssociationAttachedTail

)

(components

(multiple (GeneralClass ch))

(multiple (GeneralClass ct))

(Association r)

)

)

Figure 6-6: Description of the composed shape of a general association with a general
class attached to its head and its tail.

shape ForcePushObject states that the head of the arrow touches the object. It also
specifies that the object is usually drawn before the force.

(define sketch-shape Force

(description "An arrow is a force only if the arrow head is

pushing an object.")

(component

(OpenArrow oa)))

(define sketch-shape Object

(description "Any polygon")

(component

(Polygon p)))

(define sketch-shape-interaction ForcePushObject

(components

(Force f)

(Object o))

(constraints

(meet f.head o)

(soft draw_order o f)

))

Figure 6-7: The composed shape describing how forces push objects.

6.4 Defining Abstract Shape Interactions

We can also define abstract shape interactions. Below we have the definition of a
UMLAssociationAttachedTail. This definition prevents us from having to redefine

66

the constraints and editing behaviors for many different shapes.

(define sketch-abstract-composed-shape UMLAssociationAttachedTail

(required

(Association r)

(Class ct)

)

(constraints

(contains ct r.tail)

(!contains ct r.head)

)

)

6.5 Defining Constraints

We will examine several domains (see Section 7) to find the most common constraints
needed for defining a domain description. When an extra constraint is necessary, it can
be defined using the language’s syntax. New constraints can be defined by composing
old constraints or by defining a function using a variant of Java. The exact syntax to
describe more complicated constraints has not been decided yet.

(define sketch-constraint parallel

(description

"Tests if two lines are parallel"

)

(components

(Line l1)

(Line l2)

)

(constraints

(oneof

(equal l1.slope l2.slope)

(equal l1.slope (-1 * l2.slope))

)

)

)

6.6 Defining Editing Behaviors

Editing behaviors can be defined for both shapes and shape interactions. Popular
editing behaviors include movement and deletion. Each editing behavior must specify
a trigger and an action. The possible triggers and actions are specified in the pre-
defined list of editing behaviors.

UMLMoveClass is an editing behavior for an abstract shape. It indicates that if
you click and hold the mouse over a UMLClass for a brief amount of time, when you
begin to move the mouse, the UMLClass will translate to follow the mouse.

UMLMoveAttachedAssociationTail is an editing behavior for an abstract com-
posed shape. It indicates that whenever you move a UMLClass attached to the tail

67

of a UMLAssociation, the tail of the UMLAssociation should remain attached to
the UMLClass, but the head of the UMLAssociation should remain fixed, with the
UMLAssociation rubber-banding (translating, scaling, and rotating) itself to satisfy
both constraints.

(define sketch-edit UMLMoveClass

(components

(UMLClass c)

)

(trigger

(click-hold-drag c.bounding_box)

)

(action

(move c)

)

)

(define sketch-edit UMLMoveAttachedAssociationTail

(components

(UMLAssociationAttachedTail aat)

)

(trigger

(move aat.ct)

)

(action

(rubberband r aat.r.head aat.r.tail)

)

)

68

Chapter 7

Testing and Analysis of the
Language

Our goal is to develop a sketching language with which sketch interface developers
can describe a domain description. The sketch language will contain pre-defined
shapes, constraints, display methods, and editing behaviors, to be used in the shape
descriptions. The sketch language will also provide a syntax for describing shape
descriptions. The difficulty in creating such a language is choosing a set of predefined
entities that is broad enough to support a wide range of domains, while remaining
narrow enough to be comprehensible.

7.1 Describing Domains

We plan to use the language to describe several domains, including some of the
domains listed in Chapter 4. This will ensure appropriate breadth.

7.2 Recognition System

To test that the domain descriptions we have written are correct, we will build the
domain-independent recognition system which uses a domain description to recognize
sketches. The recognition system will also be used in the user studies, as described
below.

7.3 User Studies

We want the language to be simple enough to be comprehensible and easy to use.
The language should aid in the following two goals for writing domain descriptions:

1. The descriptions produced are correct.

2. The descriptions can be produced in a short amount of time.

69

We will ask users to describe several shapes in a domain using variations of the
language to determine which variations of the language increase comprehensibility
and ease of use.

We would like to aid users to complete correct domain descriptions in a shorter
time. The subjects will be provided with a tool to aid in the creation of a domain
description. The tool will allow users to draw shapes to test if they are recognizable in
the domain using the recognition system described above. The tool will also generate
random shapes that agree with a description.

We expect the users of our language to be experts in a particular domain. We
expect these users to be computer power users. These users may or may not also
be programmers. Thus we wish to test our language on both programmers and on
non-programmers.

70

Appendix A

Example: Domain Description for
UML

A.1 arrows-library.dd

// sketch-arrow.dd

// Arrow Library

(define sketch-shape OpenArrow

(description

"A geometrical shape of a regular arrow with an open head."

)

(components

(Line shaft)

(Line head1)

(Line head2)

)

(constraints

(coincident shaft.p2 head1.p2)

(coincident shaft.p2 head2.p2)

(coincident head1.p2 head2.p2)

(ccAngleMeet head1 shaft 45)

(ccAngleMeet shaft head2 45)

(ccAngleMeet head1 head2 90)

)

(aliases

(Point head shaft.p2)

(Point tail shaft.p2)

)

)

(define sketch-shape DiamondArrow

(description

"A geometrical shape of an arrow with a diamond shaped head"

)

(components

(OpenArrow oa)

(Line d1)

71

(Line d2)

)

(constraints

(coincident oa.shaft d1.p1)

(coincident oa.shaft d2.p1)

(coincident d1.p1 d2.p1)

(coincident d1.p2 oa.head1.p1)

(coincident d2.p2 oa.head2.p1)

(ccAngle shaft d1 45)

(ccAngle d2 shaft 45)

(ccAngleMeet d1 oa.head1 90)

(ccAngleMeet oa.head2 d2 90)

(parallel d1 oa.head2)

(parallel d2 oa.head1)

)

(aliases

(Point head oa.head)

(Point tail oa.tail)

(Line shaft oa.shaft)

(Line head1 oa.line1)

(Line head2 oa.line2)

)

)

(define sketch-shape TriangleArrow

(description

"A geometrical shape of an arrow with a triangle head"

)

(components

(OpenArrow oa)

(Line t)

)

(constraints

(coincident t.p1 oa.head1.p1)

(coincident t.p2 oa.head2.p1)

(perpendicular shaft t)

(ccAngleMeet t oa.head1 45)

(ccAngleMeet oa.head2 t 45)

)

(aliases

(Point head oa.head)

(Point tail oa.tail)

(Line shaft oa.shaft)

(Line head1 oa.line1)

(Line head2 oa.line2)

)

)

A.2 sketch-UML.dd

//sketch-UML.dd

72

#include arrows-library.dd

#include basic-shapes.dd

//List of sketchable elements in the domain.

// Star means any number. Number means that particular number.

// + means at least that many (4+ = at least 4)

// nothing means any number. (= *)

(list sketch-domain-shapes UML

//(abstract UMLAssociation)

//(abstract UMLGeneralAssociation)

//(abstract UMLInterfaceAssociation)

//(abstract UMLClass)

//(abstract UMLInterfaceClass)

(UMLDependencyAssociation)*

(UMLAggregationAssociation)*

(UMLInheritanceAssociation)*

(UMLInterfaceAssociationL)*

(UMLInterfaceAssociationA)*

(UMLInterfaceClassC)*

(UMLInterfaceClassRR)*

(UMLGeneralClass)*

)

(list sketch-domain-composed-shapes UML

(UMLGeneralClassAssociationTail)*

(UMLGeneralClassAssociationHead)*

(UMLInterfaceClassAssociationTail)*

(UMLInterfaceClassAssociationHead)*

(UMLGGClassAssociation)*

(UMLGIClassAssociation)*

//(abstract UMLAssociationAttachedHead)

//(abstract UMLAssociationAttachedTail)

)

//

//////////Abstract Shape Definitions////////////

//

(define sketch-abstract-shape UMLAssociation

(is-a

Shape

)

(required

(Point head)

(Point tail)

(Line shaft)

)

)

(define sketch-abstract-shape UMLGeneralAssociation

(is-a

73

UMLAssociation

)

)

(define sketch-abstract-shape UMLInterfaceAssociation

(is-a

UMLAssociation

)

)

(define sketch-abstract-shape UMLClass

(is-a

Shape

)

(required

(Rectangle bounding-box) //all shapes already have this

)

)

(define sketch-abstract-shape UMLInterfaceClass

(is-a

UMLClass

)

)

//

///////////////// Shape Definitions///////////////////

//

(define sketch-shape UMLDependencyAssociation)

(is-a

UMLGeneralAssociation

)

(components

(OpenArrow arrow)

)

(constraints

)

(aliases

(Point head arrow.head)

(Point tail arrow.tail)

(Line shaft arrow.shaft)

)

(display

(original_strokes arrow.shaft)

(cleaned_strokes arrow.head1)

(cleaned_strokes arrow.head2)

)

)

(define sketch-shape UMLAggregationAssociation

(is-a

UMLGeneralAssociation

)

74

(components

(DiamondArrow arrow)

)

(constraints

)

(aliases

(Point head arrow.head)

(Point tail arrow.tail)

(Line shaft arrow.shaft)

)

(display

(original_strokes arrow.shaft)

(cleaned_strokes arrow.head1)

(cleaned_strokes arrow.head2)

(cleaned_strokes arrow.d1)

(cleaned_strokes arrow.d2)

)

)

(define sketch-shape UMLInheritanceAssociation

(is-a

UMLGeneralAssociation

)

(components

(TriangleArrow arrow)

)

(constraints

)

(aliases

(Point head arrow.head)

(Point tail arrow.tail)

(Line shaft arrow.shaft)

)

(display

(original_strokes arrow.shaft)

(cleaned_strokes arrow.head1)

(cleaned_strokes arrow.head2)

(cleaned_strokes arrow.t)

)

)

(define sketch-shape UMLInterfaceAssociationA

(is-a

UMLInterfaceAssociation

)

(components

(OpenArrow arrow)

)

(constraints

)

(aliases

(Point head arrow.head)

(Point tail arrow.tail)

(Line shaft arrow.shaft)

75

)

(display

(original_strokes arrow.shaft)

//(nothing arrow.head1)

//(nothing arrow.head2)

)

)

(define sketch-shape UMLInterfaceAssociationL

(is-a

UMLInterfaceAssociation

)

(components

(Line l)

)

(constraints

(stroke_order l.p1 l.p2)

)

(aliases

(define Point head l.p2)

(define Point tail l.p1)

(define Line shaft l)

)

(display

(original_strokes l)

)

)

(define sketch-shape UMLInterfaceClassC

(is-a

UMLInterfaceClass

)

(components

(Circle c)

)

(display

(cleaned_strokes c)

)

)

(define sketch-shape UMLInterfaceClassRR

(is-a

UMLInterfaceClass

)

(components

(RoundedRectangle rr)

)

(display

(ideal_shape rr)

)

)

(define sketch-shape UMLGeneralClass

(is-a

76

Class

)

(components

(Rectangle r)

)

(display

(ideal_shape r)

)

)

///

/////////Constraint Definitions/////////////

//

//No additional constraints defined

//Not used in UML

(define sketch-constraint parallel

(description

"Tests if two lines are parallel"

)

(components

(Line l1)

(Line l2)

)

(constraints

(oneof

(equal l1.slope l2.slope)

(equal l1.slope (-1 * l2.slope))

)

)

)

///

////////////Abstract Composed Shapes///////////////

///

(define sketch-abstract-composed-shape UMLAssociationAttachedHead

(required

(Association r)

(Class ch)

)

(constraints

(contains ch r.head)

(!contains ch r.tail)

)

)

(define sketch-abstract-composed-shape UMLAssociationAttachedTail

(required

(Association r)

(Class ct)

)

77

(constraints

(contains ct r.tail)

(!contains ct r.head)

)

)

///

////////////Composed Shape Definitions/////////////

///

(define sketch-shape-interaction UMLGeneralClassAssociationTail

(is-a

UMLAssociationAttachedTail

)

(components

(multiple (GeneralClass ct))

(GeneralAssociation r)

)

)

(define sketch-shape-interaction UMLGeneralClassAssociationHead

(is-a

UMLAssociationAttachedHead

)

(components

(multiple (GeneralClass ch))

(GeneralAssociation r)

)

)

(define sketch-shape-interaction UMLInterfaceClassAssociationTail

(is-a

UMLAssociationAttachedTail

)

(components

(multiple (GeneralClass ct))

(InterfaceAssociation r)

)

)

(define sketch-shape-interaction UMLInterfaceClassAssociationHead

(is-a

UMLAssociationAttachedHead

)

(components

(multiple (UMLInterfaceClass ch))

(UMLInterfaceAssociation r)

)

)

(define sketch-shape-interaction UMLGGClassAssociation

(is-a

78

UMLAssociationAttachedHead

UMLAssociationAttachedTail

)

(components

(multiple (UMLGeneralClass ch))

(multiple (UMLGeneralClass ct))

(UMLAssociation r)

)

)

(define sketch-shape-interaction UMLGIClassAssociation

(is-a

UMLAssociationAttachedHead

UMLAssociationAttachedTail

)

(components

(multiple (UMLGeneralClass ch))

(multiple (UMLGeneralClass ct))

(UMLAssociation r)

)

)

//

//

///////////Describing Editing///////////////////////

//

//

(list sketch-edit UML

(UMLMoveClass)

(UMLMoveAssociation)

(UMLMoveAssociationHead)

(UMLMoveAssociationTail)

(UMLDeleteClass)

(UMLDeleteAssociation)

(MovementBySurroundDrag) // pre-defined context rule

(DeletionScribbleHierarchy) // pre-defined context rule

//if scribble on small part of line or arc segment, just delete that part,

//if scribble on large part of line or arc segment, delete whole segment,

(abstract MoveAttachedAssociationHead)

(abstract MoveAttachedAssociationTail)

)

(define sketch-edit UMLMoveAttachedAssociationHead

(component

(UMLAssociationAttachedHead aah)

)

(trigger

(move aah.ch)

)

(action

(rubber-band aah.r aah.r.tail aah.r.head)

//rubber-band shape fixed_point move_point

79

)

)

(define sketch-edit UMLMoveAttachedAssociationTail

(component

(UMLAssociationAttachedTail aat)

)

(trigger

(move aat.ct)

)

(action

(rubber-band r aat.r.head aat.r.tail)

//rubber-band shape fixed_point move_point

)

)

(define sketch-edit UMLMoveClass

(component

(UMLClass c)

)

(trigger

(click-hold-drag c.bounding-box)

)

(action

(move c)

)

)

(define sketch-edit UMLMoveAssociation

(component

(UMLAssociation r)

)

(trigger

(click_hold_dDrag r.shaft)

)

(action

(move r)

)

)

(define sketch-edit UMLMoveAssociationHead

(component

(UMLAssociation r)

)

(trigger

(click-hold-drag r.head)

)

(action

(rubber-band r r.tail r.head)

//rubber-band shape fixed_point move_point

)

)

(define sketch-edit UMLMoveAssociationTail

80

(component

(UMLAssociation r)

)

(trigger

(click-hold-drag r.tail)

)

(action

(rubber-band r r.head r.tail)

//rubber-band shape fixed_point move_point

)

)

(define sketch-edit UMLDeleteAssociation

(component

(UMLAssociation r)

)

(trigger

(scribble_over r.shaft)

)

(action

(Delete r)

)

)

(define sketch-edit UMLDeleteClass

(component

(UMLClass c)

)

(trigger

(scribble_over c.bounding-box)

)

(action

(Delete c)

)

)

81

Appendix B

Proposed Schedule of Thesis
Milestones

Table B.1: Proposed Schedule of Thesis Milestones

Milestone Proposed Date
Write Domain Description for UML Diagrams September 2002
Write Domain Description for Upper-Case Alphabet October 2002
Create Recognizer Base for Drawing November 2002
Develop the Language, Version 1 December 2002
Auto-load Domain Description to Drawing Recognizer January 2003
Add display capabilities to recognizer February 2003
Update Auto-loading of Domain Description to Include Display February 2003
Write Domain Description for Mechanical Engineering March 2003
Add Aliases to Recognizer March 2003
User Testing Series 1 April 2003
Write Domain Description for COA Diagrams April 2003
Develop the Language, Version 2 April 2003
Add editing capabilities to recognizer May 2003
Develop Visual Tools for Language Description June 2003
User Testing Series 2 July 2003
Update Tools, Recognizer and Language August 2003
Language Analysis September 2003
Final User Study (if necessary) October 2003
Final Research November-December 2004
Write Thesis January-March 2004
Thesis Defense April 2004

82

Bibliography

[1] Sinan Si Abhir. UML in a Nutshell: A Desktop Quick Reference. O’Reilly, 1998.

[2] Christine Alvarado. A natural sketching environmant: Bringing the computer
into early stages of mechanical design. Master’s thesis, MIT, 2000.

[3] Christine Alvarado, Michael Oltmans, and Randall Davis. A framework for multi-
domain sketch recognition. AAAI Spring Symposium on Sketch Understanding,
pages 1–8, March 25-27 2002.

[4] Oliver Bimber, L.M.Encarnao, and Andre Stork. A multi-layered architecture for
sketch-based interaction within virtual environments. Computer and Graphics,
2000.

[5] G Booch, J Rumbaugh, and I Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, MA, 1998.

[6] A.K. Brown and M. Parker. Dance Notation for Beginners. Dance Books, Lon-
don, 1984.

[7] Anabela Caetano, Neri Goulart, Manuel Fonseca, and Joaquim Jorge. JavaS-
ketchIt: Issues in sketching the look of user interfaces. AAAI Spring Symposium
on Sketch Understanding, 2002.

[8] Michael H. Coen, Brenton Phillips, Nimrod Warshawsky, Luke Weisman,
Stephen Peters, and Peter Finin. Meeting the computational needs of intelli-
gent environments: The metaglue system. In Proceedings of MANSE’99, 1999.

[9] Dukane Corporation. Dukane a/v products division mimio white paper. Tech-
nical report, Dukane Corporation, June 28 2001.

[10] Randall Davis. Sketch understanding in design: Overview of work at the mit
ai lab. Sketch Understanding, Papers from the 2002 AAAI Spring Symposium,
pages 24–31, March 25-27 2002.

[11] deming.eng.clemson.edu. Flow charts. WWW, 2003.

[12] Ellen Yi-Luen Do. Vr sketchpad - create instant 3d worlds by sketching on a
transparent window. CAAD Futures 2001, Bauke de Vries, Jos P. van Leeuwen,
Henri H. Achten (eds), pages 161–172, July 2001.

83

[13] Ellen Yi-Luen Do. Functional and formal reasoning in architectural sketches.
Sketch Understanding, Papers from the 2002 AAAI Spring Symposium, pages
37–44, March 25-27 2002. architecture.

[14] Palm Europe. Assessing enterprise requirements for handheld computing. A
Palm White Paper, 2002.

[15] Ronald W. Ferguson, Robert A. Rasch, William Turmel, and Kenneth D. Forbus.
Qualitative spacial interpretation of course-of-action diagrams. Proceedings of the
14th International Workshop on Qualitative Reasoning, 2000.

[16] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. In-
troduction to Computer Graphics. Addision Wesley, Reading, Massachusetts,
second edition in c edition, 1999.

[17] Mark Foltz. Ligature, gesture-based configuration of the e21 intelligent environ-
ment. MIT Student Oxygen Workshop, 2001.

[18] James Gips. Computer implementation of shape grammars. NSF/MIT Workshop
on Shape Computation, 1999.

[19] Christian Griesbeck. Labanotation handwriting recognition. WEB, 1996.

[20] Mark D. Gross and Ellen Yi-Luen Do. Demonstrating the electronic cocktail
napkin: a paper-like interface for early design. ’Common Ground’ appeared in
ACM Conference on Human Factors in Computing (CHI), pages 5–6, 1996.

[21] Tracy Hammond. A domain description language for sketch recognition. MIT
Student Oxygen Workshop, 2002.

[22] Tracy Hammond and Randall Davis. Tahuti:a geometrical sketch recognition sys-
tem for uml class diagrams. AAAI Spring Symposium on Sketch Understanding,
pages 59–68, March 25-27 2002.

[23] Tracy Hammond, Krzysztof Gajos, Randall Davis, and Howard Shrobe. An
agent-based system for capturing and indexing software design meetings. In
Proceedings of International Workshop on Agents In Design, WAID’02, 2002.

[24] Tracy Hammond, Metin Sezgin, Olya Veselova, Aaron Adler, Michael Oltmans,
Christine Alvarado, and Rebecca Hitchcock. Multi-domain sketch recognition.
MIT Student Oxygen Workshop, 2002.

[25] Heloise Hse, Michael Shilman, A. Richard Newton, and James Landay. Sketch-
based user interfaces for collaborative object-oriented modeling. Berkley CS260
Class Project, December 1999.

[26] iPAQ Mobile Solutions. Cross-platform communications with ipaq pocket pcs.
A Hewlett Packard Company White Paper, 2002.

84

[27] Robin L. Kullberg. Mark your calendar! learning personalized annotation from
integrated sketch and speech. CHI Short Papers Proceedings, 1995.

[28] James A. Landay and Brad A. Myers. Interactive sketching for the early stages
of user interface design. In CHI, pages 43–50, 1995.

[29] Edward Lank, Jeb S. Thorley, and Sean Jy-Shyang Chen. An interactive system
for recognizing hand drawn UML diagrams. In Proceedings for CASCON 2000,
2000.

[30] James Lin, Mark W. Newman, Jason I. Hong, and James A. Landay. Denim:
An informal tool for early stage web site design. In Video poster in Extended
Abstracts of Human Factors in Computing Systems: CHI 2001, pages pp. 205–
206., Seattle, WA, March 31 - April 5 2001.

[31] Allan Christian Long. Quill: a Gesture Design Tool for Pen-based User In-
terfaces. Eecs department, computer science division, U.C. Berkeley, Berkeley,
California, December 2001.

[32] James V. Mahoney and Markus P. J. Fromherz. Three main concerns in sketch
recognition and an approach to addressing them. AAAI Spring Symposium on
Sketch Understanding, pages 105–112, March 25-27 2002.

[33] Microsoft. With launch of tablet pcs, pen-based computing is a reality. Press
Pass: Information for Journalists, 2002.

[34] Department of the Army. Staff Organizations and Operations, volume Field
Manual 101-5. United States Army, Washington, DC, 1997.

[35] Michael Oltmans. Understanding naturally conveyed explanations of device be-
havior. Master’s thesis, MIT, 2000.

[36] J. Pittman, I. Smith, Phil Cohen, Sharon Oviatt, and T. Yang. Quickset: A
multimodal interface for military simulations. Proceedings of the 6th Conference
on Computer-Generated Forces and Behavioral Representation, pages 217–224,
1996.

[37] Dean Rubine. Specifying gestures by example. In Computer Graphics, volume
25(4), pages 329–337, 1991.

[38] Steve Sedaker and Burton Holmes. Tablet pc makers select wacom penabled
technology for unique cordless, batteryless, pressure-pen input. News Wacom,
Nov. 7 2002.

[39] Tachyon Semiconductor. More than a touch of improvement for touch-screen
control. A Tachyon Semiconductor White Paper, 2001.

[40] Metin Sezgin. Generating domain specific sketch recognizers from object descrip-
tions. MIT Student Oxygen Workshop, 2002.

85

[41] Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch based inter-
faces: Early processing for sketch understanding. Proceedings of 2001 Perceptive
User Interfaces Workshop (PUI’01), 2001.

[42] Thomas F. Stahovich, Randall Davis, and Howard E. Shrobe. Generating mul-
tiple new designs from a sketch. In AAAI/IAAI, Vol. 2, pages 1022–1029, 1996.

[43] G Stiny and J Gips. Shape grammars and the generative specification of painting
and sculpture. Information Processing, pages 1460–1465, 1972.

[44] Ivan B. Sutherland. Sketchpad, a man-machine graphical communication system.
Proceedings of the Spring Joint Computer Conference, pages 329–346, 1963.

[45] Olya Veselova. Perceptually based learning of shape descriptions from one ex-
ample. MIT Student Oxygen Workshop, 2002.

86

