
A Framework for Multi-Domain Sketch Recognition

Christine Alvarado, Michael Oltmans and Randall Davis
MIT Artificial Intelligence Laboratory
{calvarad,moltmans,davis}@ai.mit.edu

Abstract

People use sketches to express and record their ideas in many
domains, including mechanical engineering, software de-
sign, and information architecture. Unfortunately, most com-
puter programs cannot interpret free-hand sketches; design-
ers transfer their sketches into computer design tools through
menu-based interfaces. The few existing sketch recognition
systems either tightly constrain the user’s drawing style or are
fragile and difficult to construct. In previous work we found
that domain knowledge can aid recognition. Here we present
an architecture to support the development of robust recogni-
tion systems across multiple domains. Our architecture main-
tains a separation between low-level shape information and
high-level domain-specific context information, but uses the
two sources of information together to improve recognition
accuracy.

Introduction
Sketching is an efficient way to convey and record both
physical information, such as mechanical engineering de-
signs, and conceptual information, such as information ar-
chitectures. Because sketching is simple and fast, it is often
used in the early stages of design (Ullman, Wood, & Craig
1990).

Most computer aided design tools target the later, more
stable stages of design instead of the earlier, more con-
ceptual stages. Their domain-specific representation of the
user’s design gives them power, such as the ability to gener-
ate skeleton code from a UML diagram1, but their interfaces
constrain the user to picking from a menu of pieces. There-
fore, designers often sketch their early designs on paper and
transfer them to the computer later in the design process.
Not only is this transfer a time-consuming process, but a de-
sign system’s inability to interpret sketches prevents it from
understanding the design at a time when the designer is mak-
ing many important design decisions.

Imagine instead that the designer could sketch directly
onto the computer using a digitizing tablet without chang-
ing her natural drawing style. While she drew, a tool would
recognize her strokes as objects in a specified domain. At

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1UML stands for Universal Modeling Language, and is a visual
language for designing object oriented software systems.

any time during the design process she would have the free-
dom of sketching on paper and the benefit of a computer
aided design tool.

One of the most difficult problems in creating such a
sketch recognition system is handling the tradeoff between
ease of recognition and drawing freedom. The more we
constrain the user’s drawing style, the easier recognition be-
comes. For example, if we enforce the constraint that each
component in the domain must be drawn with a carefully
constructed symbol that can be drawn with a single stroke,
we can build recognizers that can distinguish between the
symbols, as was done with the Palm PilotTM . The advantage
in using single-stroke recognizers is accuracy; the disadvan-
tage is the designer is constrained to a specific language.

In response, researchers have suggested several ap-
proaches for building computer design tools for early stages
of design. One approach is to focus away from recognition
and build tools that support the design process without wor-
rying about interpreting the sketch as suggested by Landay
(2001). While this approach does involve the computer in
the early design, making it easy to record the design process,
in some domains it does not lend itself to the automatic tran-
sition from the early stage design tool to a more powerful
design system.

A second approach is to carefully design a constrained set
of icons or menus that, while constraining the user’s draw-
ing style, do not inhibit the design process. This approach
should not be ruled out and eventually must be tested against
free-sketch systems.

We focus on a third approach—a recognition system that
can interpret the designer’s sketches without disrupting the
drawing process. The ideal recognition system would be-
have as a human observer would, looking over the designer’s
shoulder, unobtrusively interpreting her sketch as she draws.
Such a recognition system should have the following char-
acteristics:

• Recognition accuracy and awareness: If the user has to
stop to correct the system’s interpretations, it will inter-
rupt the design process. Similarly, if the system tries to
interpret the user’s strokes before it has enough informa-
tion, it is more likely to err in interpreting pieces of the
user’s drawing. The system should thus not only be very
accurate with its recognition, but also be aware of when it
has enough information to interpret a piece of the drawing

and when it should wait for more strokes to be drawn.

• Easily implemented in most domains: Recognition sys-
tems are currently tedious to construct and must be engi-
neered from scratch for each particular domain. A good
framework should be able to apply the same set of low-
level geometric recognizers and generic recognition tech-
niques to a variety of domains.

This paper presents a domain-flexible architecture for
sketch recognition systems that we believe will make these
systems both easier to construct and more robust in op-
eration. At the heart of our approach is a method that
combines high-level, domain-specific information with low-
level, domain-independent recognizers.

The structure of this paper is as follows. First, we describe
the difficulties involved in recognition and explore the power
that comes from domain-specific information. Next, we de-
scribe the type of knowledge used in our framework and how
that knowledge is used for recognition. In the next section
we detail the structure we use to implement this recognition
process. We then discuss the advantages of our approach, as
well as the open questions and future directions. Finally, we
discuss related work.

A Closer Look at Recognition
At the simplest level, recognition involves observing the out-
side world, and matching these observations to previously
seen, named patterns. Thus, a recognition system consists
of two separate pieces: a representation of the knowledge
of the world around it, such as the shapes it can recognize,
and a method for applying that knowledge to incoming data.
The difficulty in building a recognition system lies in deter-
mining what knowledge to include in our representation and
how to apply this knowledge.

A Simplistic Model
Traditional sketch recognition approaches, such as the ap-
proach developed by Rubine (1991), are powerful for sin-
gle stroke classification; however, they do not scale well to
complex sketches because they make the assumption that
patterns in a domain can be represented and recognized in
isolation.

Assuming that shapes can be recognized independently
allows for construction of a single isolated model for each
shape in a domain. Systems built on this assumption apply
each shape model to new input to determine which shape
most closely describes the input. These models are relatively
straightforward to build and apply, and in simple domains
they are fairly accurate.

Unfortunately, this approach has some serious conse-
quences. In order to perform recognition, the system must
determine which strokes should be grouped to form valid
patterns. To avoid this problem, some systems constrain the
user to drawing each object with a single stroke. While this
constraint may be fine for editing gestures or simple shapes
such as circles or lines, it quickly begins to limit the de-
signer’s freedom. Imagine trying to draw a pulley with a
single stroke! Eventually the user is forced to learn a spe-
cialized alphabet just to be able to draw.

Figure 1: A mechanical engineering sketch. Context helps
us interpret the circle as a pivot joint connecting two me-
chanical bodies.

While stroke grouping is difficult, there is a more serious
problem with the isolated recognition approach—the system
loses the ability to use the context in which that shape ap-
pears to help recognize the shape. Context is not merely
helpful, it is essential to robust recognition of unconstrained
sketches.

Context
Recognition is more than just identifying shapes in isolation.
The context in which a particular stroke or group of strokes
appears influences the interpretation of that stroke. Hence,
recognition involves both the identification of patterns and
the interpretation of those patterns with respect to the con-
text in which they appear.

Context influences recognition in two distinct ways: dis-
ambiguating between possible interpretations and helping
to recognize shapes that otherwise would have been mis-
recognized. In previous work we have shown that domain
knowledge is essential to resolving inherent ambiguities in
a sketch (Alvarado & Davis 2001). For example, consider
the sketch in Figure 1. Imagine that the rectangular shapes
can only be recognized as mechanical bodies. The circle, on
the other hand, could either be a mechanical body or a pivot
joint connecting the two rectangular bodies. By its shape
we cannot determine the correct interpretation, but when we
note that in the domain of mechanical engineering bodies
are likely to be connected with joints, and unlikely (in our
two-dimensional world) to overlap with other bodies with-
out a connection, we can conclude that the circle is likely to
be a pivot joint. Context also helps us identify messy input.
Consider the shape connecting the two boxes in Figure 2. In
isolation, it might be difficult to identify, but if we realize
that the boxes are classes in a UML diagram and we know
that classes are linked together with arrows, it immediately
becomes clear that the correct interpretation for that shape is
an arrow.

While context is essential to robust recognition, it is nec-
essary to maintain a separation between shape recognition
and contextual influence in order to build extendable sys-
tems. A naive approach is to build context directly into the
pattern models in a given domain. For example, a UML
recognition system might represent an arrow as a stroke that
connects two classes and that is more or less straight. This

Figure 2: A UML diagram. Context helps us recognize the
stroke between the two boxes as an arrow, even though it
might not look like one in isolation.

model works for the domain of UML, but cannot be applied
to other domains (for example, in mechanical engineering
where arrows represent forces). The arrow itself is simply a
shape whose canonical representation does not change from
domain to domain; it is our tolerance for variations in its
shape that varies according to the domain. Thus, basic shape
models should be applicable across domains. The rest of
this paper describes how our approach combines shape and
contextual information to perform recognition in a given do-
main.

Hierarchical Recognition
Another source of power in human recognition is the ability
to recognize objects hierarchically. Biederman (1987) sug-
gests that humans recognize a set of primitive shapes, called
geons, that combine to allow us to recognize more compli-
cated objects.

Hierarchical recognition is not strictly necessary. For ex-
ample, a system could represent an “X” as two crossed lines
that bisect one another, or it could treat the image as a vec-
tor and learn a direct representation for an “X.” However,
hierarchical recognition provides a natural way to build an
extendable recognition system. A system that recognizes
an “X” directly from an image vector does not exploit the
fact that it may already know how to recognize lines. On
the other hand, a hierarchical system can use this fact sim-
plify the recognition model for an “X,” making it easier to
specify. Furthermore, many sketched symbols are composi-
tional; hence hierarchical recognition fits the task of sketch
recognition.

Recognition Within Our Framework
We aim to build a recognition framework that can be ap-
plied naturally and efficiently to a variety of domains, yet
takes advantage of the power that comes from context. We
are motivated by the utility of domain knowledge for speech
understanding, and inspired by the design of the Hearsay-II
System (Ermanet al. 1980). Hearsay-II combined knowl-
edge at various levels of the speech interpretation process,
including the syllable, word, and phrase levels, to generate
and choose from multiple interpretations of a spoken utter-
ance. We believe a similar architecture can be effective in
sketch understanding.

As described above, recognition is the process of applying
some pre-existing knowledge to identify new input. Recog-

nition involves not only recognizing an object’s shape, but
also interpreting that shape within the surrounding context.
Here we describe in more detail the types of knowledge our
system uses to do recognition and describe our method for
applying that knowledge to generate correct interpretations,
despite messiness in the sketch and ambiguities in the draw-
ing.

Knowledge Representation
To be easily extendable to different domains, our framework
must be able to represent both general and domain-specific
patterns. Given the demonstrated importance of domain-
specific context for robust recognition, it must also be able
to represent contextual information.

Because we are using a hierarchical recognition approach,
we represent shapes using a shape description language.
Shape description grammars were introduced formally by
Stiny and Gips (Stiny & Gips 1972) and have been used
mainly for generation of patterns. While they fell out of
favor for pattern generation, we believe they are a feasible
approach for recognition. As the focus in this paper is on
recognition, not the shape description language, our treat-
ment of the language is from the standpoint of its use as a
knowledge representation. We do not formally analyze its
theoretical properties.

At the lowest level, we defineprimitive objectsto be pat-
terns that cannot be recognized as a combination of other
objects and must be recognized directly, such as lines and
curves.

Objects within our recognition system have certainprop-
ertiesthat describe possible interactions between them. We
distinguish between three types of properties. Acondition
is a boolean property of an object or pair of objects, such
as “vertical line1” or “concentric circle1 circle2.” Anat-
tribute is a numerical measure of some aspect of an object
or pair of objects, such as “length line1” or “angle-between
line1 line2.” A comparisonis a relationship (e.g. greater-
than, less-than or equals) between two attributes.

Finally, compound objectsare constructed from primitive
objects or other compound objects. They are specified by
their component objects and properties of those component
objects. For example, the specification for an and-gate is
shown in Figure 3.

We draw a distinction between geometric objects, such as
lines, circles, and arrows, and domain-specific objects such
pivot joints and springs. This distinction is a subtle but im-
portant one. Whenever possible, we separate geometric pat-
terns from their domain-specific counterparts. For example,
in mechanical engineering, a force is represented with an
arrow. However, because the arrow is also used in other do-
mains, its shape is not specific to the domain of mechanical
engineering. We would like to be able to specify information
about a “force” without having that information tied to the
geometric object “arrow”. Therefore, we can specify a geo-
metric compound object called an arrow that is made up of
three lines and some properties of those lines, and a domain-
specific compound object called a “force” that is just made
up of an arrow. Thus we can use the arrow’s shape model in
other domains.

DEFINE AND-GATE
line L1 L2 L3
arc A
parallel L1 L2
same-horiz-position L1 L2
same-length L1 L2
connected A.p1 L3.p1

connected A.p2 L3.p2
meets L1.p2 L3
meets L2.p2 L3
semi-circle A
orientation(A, 180)
vertical L3

Figure 3: The description of an and-gate symbol includes
the properties and low-level shapes that compose it.

In addition to representing shape information, we also
represent contextual information. Our system uses two types
of context to aid recognition.Temporal contextprovides in-
formation about the order in which components are likely
to be drawn. For example, in mechanical engineering, bod-
ies are usually drawn before the joints that connect them.
Spatial contextprovides information about the shape pat-
terns that are likely to occur in a given domain. For exam-
ple, in UML diagrams, “instance-of” relations (represented
with arrows) often link classes. While shape information can
be domain-independent, contextual information is almost al-
ways specific to a particular domain.

Requirements for Recognition
In the next stage of the recognition process the system ap-
plies its knowledge of shape and context to produce the best
mapping from domain-specific patterns to the user’s strokes.
Three challenges that must be addressed during this stage are
segmentation, ambiguity resolution, and uncertainty man-
agement.

The process of segmentation involves determining which
parts of a visual scene belong to which conceptual object.
Because we wish to allow the user to draw objects freely,
using any number of strokes in any order, our system must
address this issue. Fortunately, our task is simplified because
the system knowsa priori the objects it is trying to iden-
tify, and each stroke usually part of only one object. Still,
the process of finding the correct segmentation can be time
consuming. Humans identify properties such as “tangent”
or “parallel” without effort, but computer programs might
have to consider many pairs of objects before discovering
two with a given property. In general, this process will not
work if applied naively: The combinatorics indicate that the
system cannot simply try grouping each stroke with all other
strokes before deciding on the best segmentation.

Another recognition difficulty is that ambiguities arise
during the sketching process because shape information is
not sufficient to identify a particular object. As we have
seen, in Figure 1 it is not clear whether the circle is a me-
chanical body or a pivot joint.

Finally, the algorithm must be capable of handling uncer-
tainties that arise during recognition due to messy and am-

biguous input and deciding on the best interpretation for the
user’s strokes. Our algorithm must not allow the number of
possible interpretations to grow too large, but it must also be
sure not to eliminate any interpretation that might be correct.

Recognition Algorithm

In order to resolve the above problems, as the user draws,
our algorithm generates a number of possible interpretations
by combining bottom-up pattern activation with top-down
knowledge application. We define aninterpretation as a
mapping from a set of strokes to a single high-level pattern.
These interpretations are then pruned using the notion of “is-
lands of certainty” developed in Hearsay-II.

There are four steps in our recognition algorithm:

1. Bottom-up Step: As the user draws, the system parses the
strokes into primitive objects using a domain-independent
recognition toolkit developed in previous work (Sezgin
2001). Compound interpretations are hypothesized by in-
stantiating a template for each compound object that in-
clude these low-level shapes, even if not all the subcom-
ponents of the pattern have been recognized.

2. Top-down Step: Once the system has a number of par-
tially filled templates, it then identifies the missing sub-
components from these templates and attempts to reinter-
pret strokes that are temporally and spatially proximal to
the proposed shape to fulfill the role of the missing com-
ponents. If, for example, the system had detected an arc
and two wires of the and-gate in Figure 3, it would try
to reinterpret spatially and temporally adjacent strokes as
lines to complete the gate.

3. Ranking Step: At this point, many different interpreta-
tions may have been proposed for the same strokes, some
more likely than others. Based on previously interpreted
parts of the sketch, the system identifies temporal and spa-
tial context for the newly recognized patterns and uses this
context to assign likelihoods to the templates that were
generated in step 1 and modified in step 2. The system
then explores sets of interpretations for the user’s strokes
starting with the highest ranked individual interpretation
(an island of certainty) using a best-first-search method
until it generates a given number of possible sets.

4. Pruning Step: Once the system has evaluated the like-
lihood of the various interpretations, it must prune off
the interpretations that are unlikely to occur. The sys-
tem makes concrete any interpretations that have likeli-
hood above a threshold and eliminates any interpretations
not appearing in the sets generated in step three. All other
interpretations are deemed possible and are considered in
relation to the user’s next strokes when step 1 repeats.

In our initial implementation these steps will be applied
in order; however, eventually our framework will use an op-
portunistic method of recognition in which these steps may
be applied in any order, depending on the state of the recog-
nition process.

Implementation
We use a blackboard architecture similar to the one used
in Hearsay-II’s speech recognition engine. A blackboard
style implementation allows our system to combine multiple
sources and types of knowledge into a unified framework.
Unlike the Hearsay-II system, our system uses a Bayesian
network to manage the uncertainties the arise during the
recognition process.

A Blackboard Architecture

The idea behind a blackboard style architecture is simple.
Imagine that to solve a problem you are going to bring in a
bunch of specialists who all know something about a small
piece of the problem. Together they can solve this problem,
but they are not allowed to talk to one another. What do they
do? Luckily, the problem is written on a blackboard in the
front of the room, and the experts are allowed to go to the
board one at a time, make some progress on the solution and
then sit back down, leaving their improvement for all the
other experts to see.

A blackboard system typically contains three major com-
ponents: the blackboard data structure, the knowledge
sources, and the controller. The blackboard holds the data
relevant to the emerging solution. The knowledge sources
are the specialists that each know a specific way of manipu-
lating certain types of data on the blackboard. The controller
is in charge of organizing the knowledge sources so that they
make efficient progress toward the solution. A simplistic
controller just lines up the knowledge sources and lets them
each have a chance, while a more sophisticated controller
selects knowledge sources that will contribute the most in-
formation to the problem solution.

Blackboards have several qualities that make them appli-
cable to our framework. First, they allow us to easily extend
and change the knowledge the system uses to do recognition.
We can model both general and domain specific shape and
context information inside knowledge sources. Because the
knowledge sources do not depend on one another directly,
if we move to a different domain, we can simply deacti-
vate some knowledge sources and activate others. Second,
blackboard architectures support system prototyping. As we
implement our framework, we will be able to easily mod-
ify pieces of the recognition process and judge how each
modification affects the system’s performance. Finally, the
blackboard data structure can be organized into different lev-
els of information. The multi-layered structure supports our
bi-directional recognition algorithm.

To illustrate information flow through the levels of the
blackboard, consider what happens when a simplified ver-
sion of our recognition algorithm is applied to the sketch
in Figure 4. In the bottom-up step, six of the seven lines
are recognized correctly. The three on the left are combined
to form an arrow, which in turn is interpreted as a force.
The four strokes on the right are not recognized directly as a
polygon, but because the system sees that the three lines that
were recognized have some of the properties of a polygon, it
hypothesizes that a polygon exists. In the top-down step the
system sees that it has a potential polygon, and looks for a

All−nighter

Same−clothesAsleep−in−class

Figure 5: A simple Bayesian network. The fact that a student
pulled an all-nighter makes it more likely that he will be
wearing the same clothes the next day and that he will fall
asleep in class.

stroke that might be the missing line. It finds the appropriate
stroke and fits it into the polygon template. In step three, the
fact that force arrows are often connected to bodies (spatial
context) further enforces our belief that the stroke is indeed
a line that is part of a polygon that represents a mechanical
body.

Representing Uncertainty
We have indicated that our system must maintain a number
of different interpretations for the user’s sketch and that its
ultimate goal is to choose the “most likely” set of interpre-
tations. Our system uses a Bayesian network to represent
recognition uncertainties.

Bayesian networks represent the influence one event has
on another. They are structured as directed acyclic graphs.
An arrow between two nodes indicates that that there is a
causal relationship between the first event and the second.
Each link contains a conditional probability table specifying
how likely it is that one event caused the other. For example,
we could model the consequences that pulling an all-nighter
has on a student’s ability to stay awake in class, and his ten-
dency to wear the same clothes two days in a row (Figure 5).
Ordinarily, the two events would not necessarily be related,
but if we believe that pulling an all-nighter is a good pre-
dictor for both events, and we observe the student wearing
the same clothes two days in a row, we might expect that he
pulled an all-nighter the night before and therefore is likely
to fall asleep in our class.

Each compound object is modeled by a fragment of a
Bayesian network. The root node represents the compound
object, and it has one child to represent each subcomponent
and property. The representation for an and-gate is shown in
Figure 6. We can think of this as similar to the all-nighter
example. An and-gate is made up of certain components and
relationships between those components. Thus, an and-gate
can be considered a strong predictor of its subcomponents;
if we see an and-gate, it is almost certain that we also see
the arc and lines that make up that and-gate. However, not
all the subcomponents of the and-gate are strong predictors
for the and-gate; some carry more weight than others. This
has to do with the probability that these components occur
in other patterns in the sketch. For example, if we just see a
line, our belief that the user is drawing an and-gate goes up
only slightly, because lines are so common. However, if we

Geometry

Strokes

Context

Stroke(s1) Stroke(s2) Stroke(s3) Stroke(s4) Stroke(s5) Stroke(s6) Stroke(s7)

Line(l4) Line(l5) Line(l6) Line(l7)

Arrow(a1)

Force(f1) Body(b1)

Polyon(p1)

Forces push bodies

Connects(l4, l5)
Connects(l4, l7)

Connects(l6, l7)
Connects(l5, l6)

Line(l1) Line(l2) Line(l3)

Connects(l1, l2)
Connects(l1, l3)
Connects(l2, l3)

Geometric
Shapes

Specific
Domain

Compound

Symbols

Figure 4: The recognition process in the drawing of a force pushing on a rectangular body. The blackboard data structure is
divided into various levels of information. Italics indicate that an object was hypothesized by the system. In most cases, bottom
up information causes the recognition of higher level objects, but in the case of the mechanical body, top down information
reinforces the system’s hypotheses.

see two parallel lines of the same length that meet a perpen-
dicular line, we begin to be more sure of our prediction.

Representing the structure of complex objects using the
nodes of a Bayesian Network seems straightforward at first,
but not all aspects of this representation are so simple. To
illustrate the problems we encounter and our solutions for
each of these issues, we use the task of recognizing the play
button for a CD player (Figure 7). The button is made up of a
rectangle and a triangle and some properties of those shapes
(i.e., the triangle is inside the rectangle and centered within
it). However, the triangle and the rectangle are themselves
compound shapes made up of lines and properties of those
lines.

Ordinarily Bayesian networks represent a fixed set of in-
formation about the world. In a sketch, however, the infor-
mation is constantly changing as the user adds and removes
strokes. To address the issue of using Bayesian Networks
in a dynamic environment, our system builds networks on
the fly. For example, once the user has drawn the first three
strokes of the rectangle, the system might decide to hypoth-
esize the existence of a rectangle and instantiate the rectan-
gle’s Bayesian network fragment. This, in turn, leads the
system to hypothesize the existence of a play button. The
play button’s Bayesian network fragment is instantiated us-
ing the root node of the rectangles fragment as one of its
sub-components (see Figure 7).

Note that when the system hypothesizes fragments of the
network, some of the leaf nodes, which always represent

primitive objects or properties, may not be grounded in real
data. For example, the system may not have seen the fourth
line in the rectangle, or may not yet have calculated whether
the triangle is inside the square. This is perfectly accept-
able in Bayesian networks; those nodes are simply treated
as “unobserved.” However, when the system detects another
primitive object or property to fit into the network, it must be
able to attach a certainty measure to its observation. For ex-
ample, the system might think it sees a line, but not be sure,
as the stroke could also be an arc. Unfortunately, Bayesian
networks require that observations be either true or false. To
get around this problem, when the system observes primitive
object or properties, it extends node for observed the object
or property with a child node whose value is observed to be
true (see Figure 7). The system then constructs a conditional
probability table for the new link that reflects the appropriate
certainty in the object or property’s node.

Finally, while it is relatively straightforward to specify
the structure of these networks, determining the appropri-
ate numbers to fit into the network can be more problematic.
What exactly does each of the numbers mean? Let’s exam-
ine the play button (P) template once again. For each child
nodec, we must specifyP (c|P) and P (c|¬P). The first
probability refers to the probability that a rectangle is present
when a play button is present. This probability should be
quite high since we define a play button to be constructed
using a rectangle. The meaning of the second probability is
less clear. It refers to the probability that we are observing a

Sketch Description Network Fragment

DEFINE AND-GATE
L1,L2,L3: line L1 L2 L3
A: arc A
P1: parallel L1 L2
P2: same-horiz-position L1 L2
P3: same-length L1 L2
P4: connected A.p1 L3.p1

P6: connected A.p2 L3.p2
P5: meets L1.p2 L3
P7: meets L2.p2 L3
P8: semi-circle A
P9: orientation(A, 180)
P10: vertical L3

A P10

And−Gate

L3 P1L1 . . .L2

Figure 6: The description of an and-gate symbol from Figure 3. Each of these shapes and properties becomes a node in a
Bayesian network fragment.

Sketch

Network Fragment

Triangle

L2L1 L3 P1 ...

Property2 Property1Rectangle

L1 L4 P1

...

Play−Button

... ...

O1 O2

Figure 7: The sketch of a play button and its associated
Bayesian network fragment. Note that this network frag-
ment builds on top of a fragment for a rectangle and a frag-
ment for a triangle. The leaf nodes (i.e. primitive objects and
properties) that have been observed in the sketch are linked
to observation nodes.

rectangle given that we know that the user isnot drawing a
play button. Intuitively this number is how likely a rectangle
is to appear in other compound shapes in the domain scaled
by how likely those shapes are to appear. Finally, we must
specify the prior probability of seeing a play button. In our
system, this number is not constant, but can be influenced by
what else is going on in the sketch near the play button. For
example, CD players rarely have more than one play but-
ton, so if the system has already recognized a play button,
the prior probability of recognizing another one will go way
down.

Discussion
We have not yet completed implementation of this frame-
work, and therefore have not formally evaluated its strengths
and weaknesses in practice. In this section we argue for the
decisions we have made in designing this system and ana-
lyze the areas that require the most attention in future work.

Our framework has several recognition advantages over
existing approaches. It uses contextual information to re-
solve ambiguities and handle messy input. To effectively
apply context, it seamlessly integrates domain-independent

and domain-specific information through a combination of
bottom-up and top-down recognition. Bayesian networks
are a natural tool for allowing low-level information to influ-
ence expectation of high-level components and in turn other
low-level patterns. Furthermore, this framework is unique
in its ability to apply domain-specific information from any
domain and reuse domain-independent information.

Our approach is especially tailored to interactive recogni-
tion environments because at any point the system is aware
of possible future interpretations of an incomplete sketch.
For example, if the user has drawn a play button, the system
knows to wait for a few more strokes before making this in-
terpretation concrete because she might actually be drawing
a fast forward button.

One important focus of our future efforts will concern
resolving questions that arise within the Bayesian network
representation. As one example, our system combines three
types of knowledge by allowing the spatial and temporal
context to alter the prior probabilities of the root nodes in
the Bayesian network. Exactly how context should influence
these probabilities is a non-trivial question at the heart of our
approach that we will explore through experimentation.

Another problem arises in determining when exactly the
system should instantiate recognition hypotheses. Just about
every compound object contains a line; it seems wasteful to
hypothesize every object each time the user draws a line.
Determining how much information should be required to
trigger each hypothesis is an area we must explore.

A final challenge is how to enter the knowledge into the
recognition system. Grammars are tedious to write, and in
previous work we found that explicitly specifying context,
while possible, is difficult. Our group is currently investi-
gating ways to learn the grammars (as Do and Gross (1996)
have attempted), as well as the temporal and spatial infor-
mation, from examples.

Related Work
Other sketch recognition systems include those developed
by Landay and Meyers (2001), Do and Gross (1996), For-
bus, Fergeson and Usher (2001) and Stahovich (1999). Each
system copes with recognition ambiguity in a different way.
Our previous work (Alvarado & Davis 2001) uses context to
disambiguate between multiple interpretations of a sketch,
but like other previous work it is still driven by low-level
recognition accuracy. The work described here differs from

all previous systems in its ability to allow high-level inter-
pretations to guide low-level recognition accuracy.

Bimber et. al. (2000) have proposed a multi-layer archi-
tecture for recognizing sketches of three-dimensional sys-
tems. However, rather than focusing on more robust recog-
nition to give the designer more drawing freedom, the au-
thors focus on allowing users to specify two-dimensional
gestures to represent three-dimensional solid objects.

Blackboard recognition systems were first introduced for
the domain of speech recognition with the Hearsay-II system
(Ermanet al. 1980), and have since been extended to many
other domains2. Unlike previous systems, we take a more
structured approach to modeling the uncertainty throughout
the recognition process with the use of Bayesian networks.

There has been a limited amount of work in using top
down information to guide real-world visual interpretation
including (Bienenstock, Geman, & Potter 1997), (Kumar &
Desai 1996), and (Liang, Jensen, & Christensen 1996). Our
domain is slightly less complex in that sketches are highly
stylized, so the problem of locating (but not recognizing)
low-level shapes is lessened.

Conclusion
We have described a framework that allows domain-specific
shape and contextual information to be combined with
generic shape information to make sketch recognition sys-
tems more robust and easier to construct. We claim that
domain knowledge is essential to practical recognition sys-
tems.

Currently, recognition systems either constrain the user’s
drawing style or fail to robustly handle complex input. By
incorporating domain knowledge in a structured fashion we
believe we will be able to construct recognition systems with
enough accuracy to be beneficial in early stages of design,
allowing the designer to draw freely using computer design
tools without modifying her drawing style.

Acknowledgements
This work is financially supported by the MIT-Oxygen Col-
laboration. The authors would like to thank Alex Snoeren
for helpful editing comments.

References
Alvarado, C., and Davis, R. 2001. Resolving ambiguities
to create a natural sketch based interface. InProceedings.
of IJCAI-2001.

Biederman, I. 1987. Recognition-by-components: A the-
ory of human image understanding.Psychological Review
94(2):115–147.

Bienenstock, E.; Geman, S.; and Potter, D. 1997. Com-
positionality, mdl priors, and object recognition. In
M. C. Mozer, M. I. Jordan, T. P., ed.,Advances in Neural
Information Processing Systems 9. MIT Press. 838–844.

2For for a comprehensive survey of blackboard systems see (Nii
1986a; 1986b).

Bimber, O.; Encarnacao, L. M.; and Stork, A. 2000.
A multi-layered architecture for sketch-based interaction
within virtual environments. Computers & Graphics
24:851–867.
Do, E. Y.-L., and Gross, M. D. 1996. Drawing as a means
to design reasoning.AI and Design.
Erman, L.; Hayes-Roth, F.; Lesser, V.; and Reddy, R.
1980. The hearsay-ii speech-understanding system: Inte-
grating knowedge to resolve uncertainty.Computing Sur-
veys12(2):213–253.
Forbus, K.; Ferguson, R.; and Usher, J. 2001. Towards a
computational model of sketching. InIUI ’01 .
Kumar, V. P., and Desai, U. B. 1996. Image interpretation
using bayesian networks.IEEE Transactions on Pattern
Analysis and Machine Intelligence18(1):74–77.
Landay, J. A., and Myers, B. A. 2001. Sketching inter-
faces: Toward more human interface design.IEEE Com-
puter34(3):56–64.
Landay, J. 2001. Informal tools for designing anywhere,
anytime, anydevice user interfaces. Lecture at Stanford
University, Seminar on People, Computers, and Design.
Liang, J.; Jensen, F. V.; and Christensen, H. I. 1996. A
framework for generic object recognition with bayesian
networks. InProceedings of the First Interational Sym-
posium on Soft Computing for Pattern Recognition.
Nii, H. P. 1986a. Blackboard application systems and a
knowledge engineering perspective.The AI Magazine82–
107.
Nii, H. P. 1986b. The blackboard model of problem solv-
ing and the evolution of blackboard architectures.The AI
Magazine38–53.
Rubine, D. 1991. Specifying gestures by example.Com-
puter Graphics329–337.
Sezgin, T. M. 2001. Early processing in sketch recognition.
Master’s thesis, Massachusetts Institute of Technology.
Stahovich, T. F. 1999. Learnit: A system that can learn and
reuse design strategies. In1999 ASME Design Engineering
Techincal Conference Proceedings.
Stiny, G., and Gips, J. 1972. Shape grammars and
the generative specification of painting and sculpture. In
Freiman, C. V., ed.,Information Processing 71. North-
Holland. 1460–1465.
Ullman, D. G.; Wood, S.; and Craig, D. 1990. The impor-
tance of drawing in mechanical design process.Computer
& Graphics14(2):263–274.

