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Abstract

This paper presents a novel form of dynamically
constructed Bayes net, developed for multi-domain
sketch recognition. Our sketch recognition engine
integrates shape information and domain knowl-
edge to improve recognition accuracy across a vari-
ety of domains using an extendible, hierarchical ap-
proach. Our Bayes net framework integrates the in-
fluence of stroke data and domain-specific context
in recognition, enabling our recognition engine to
handle noisy input. We illustrate this behavior with
qualitative and quantitative results in two domains:
hand-drawn family trees and circuits.

1 Introduction
There is a gap between how people naturally express ideas
and the ability of computers to use that information. For ex-
ample, while sketching provides a natural way to record de-
sign ideas in many domains, sketches are, unavoidably, static
pictures. Computer aided design tools, on the other hand,
offer powerful capabilities, but require designers to interact
through buttons and menus. The hardware to draw on the
computer exists; the missing element is the computer’s abil-
ity to interpret hand-drawn symbols in a domain. To address
this problem, we are constructing a general sketch recognition
architecture applicable to a number of domains, and capable
of parsing freely-drawn strokes in real time and interpreting
them as depicting objects in the domain of interest.

Sketch recognition involves two related subproblems:
stroke segmentation and symbol recognition. Segmentation
determines which strokes should be grouped to form a single
symbol. Symbol recognition determines what symbol a given
set of strokes represents.

The difficulty of doing segmentation and recognition si-
multaneously has led previous approaches to place con-
straints on the user’s drawing style, or focus on tasks where
assumptions can greatly reduce segmentation complexity. For
example, the multimodal approach in [Wu et al., 1999] as-
sumes that each symbol will be drawn independently, and that
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the user will often say the name of the symbol when drawing
it. The approach in [Kara and Stahovich, 2004] assumes that
the diagram (a feedback control system) consists of shapes
linked by arrows, which is not true in other domains.

While these systems have proven useful for their respective
tasks, we aimed to create a more general system, independent
of drawing assumptions in any one domain. Our system is
designed, instead, to be applied to a number of symbolic do-
mains by giving it descriptions of shapes and commonly oc-
curring combinations of shapes. We use these descriptions in
a three-stage, constraint-based approach to recognition. Our
system first relies on a rough processing of the user’s strokes
to generate a number of interpretation hypotheses. In the sec-
ond stage, the system uses a novel form of dynamically con-
structed Bayes net to determine how well each hypothesis fits
the data. In the third stage, it uses this evaluation to guide fur-
ther hypothesis generation. This paper focuses specifically on
the second stage, exploring hypothesis evaluation; the other
two stages are described in [Alvarado, 2004].

Using Bayes nets for hypothesis evaluation offers two
advantages over previous constraint-based recognition ap-
proaches (e.g., [Futrelle and Nikolakis, 1995; Hammond and
Davis, 2004]). First, our system can interpret drawings as
they develop, identifying shapes before they are complete.
Second, the system’s belief in a hypothesis can be influenced
by both the strokes and the context in which the shape ap-
pears, allowing the system to cope with noise in the drawing.

We constructed a sketch recognition engine and used it in
two domains: family tree diagrams and circuit diagrams. We
show that the Bayes net successfully allows domain-specific
context to help the system overcome noise in the stroke data,
reducing interpretation errors compared to a baseline system.

2 Dynamically Constructed Graphical Models
While time-based graphical models (e.g., Dynamic Bayes
Nets) have been widely used, they are not suitable for sketch
understanding, for two reasons. First, we must model shapes
based on two-dimensional constraints (e.g., touches) rather
than on temporal constraints (i.e., follows). Second, our mod-
els cannot simply unroll in time as data arrives: we cannot
necessarily predict the order in which the user will draw the
strokes, and things drawn previously can be changed.

While it is not difficult to use Bayes nets to model spatial
relationships, static Bayes nets are not suitable for our task
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C5 = (shorter line-fit(s3) line-fit(s2))
C6 = (acuteAngle line-fit(s2), line-fit(s3))
C7 = (acuteAngle line-fit(s2), line-fit(s4))

Figure 1: A single current source hypothesis (CS1) and asso-
ciated lower-level hypotheses.

because we cannot predict a priori the number of strokes or
symbols the user will draw. For sketch recognition, as in re-
lated dynamic tasks, models to reason about specific problem
instances (e.g., a particular sketch) must be dynamically con-
structed in response the input. This problem is known as the
task of knowledge-based model construction (KBMC).

Early approaches to KBMC focused on generating Bayes
nets from probabilistic knowledge bases [Glessner and
Koller, 1995; Haddawy, 1994]. A recently proposed repre-
sentation uses generic template knowledge directly as Bayes
net fragments that can be instantiated and linked together at
run-time [Laskey and Mahoney, 1997]. Finally, Koller et
al. have developed a number of object-oriented frameworks
[Koller and Pfeffer, 1997; Pfeffer et al., 1999; Getoor et al.,
1999]. These models represent knowledge in terms of rela-
tionships among objects and can be instantiated dynamically
in response to the number of objects in a particular situation.

Although these frameworks are powerful, they are not di-
rectly suitable for sketch recognition. First, because of the
size of the networks we encounter, it is sometimes desirable
to generate only part of a complete network, or to prune nodes
from the network. In reasoning about nodes in the network,
we must account for the fact that the network may not be
fully generated or relevant information may have been pruned
from it (see [Alvarado, 2004] for details). Second, these pre-
vious models have been optimized for responding to specific
queries about a single node in the network. In contrast, our
model must provide probabilities for a full set of possible in-
terpretations of the user’s strokes.

3 Network Structure
Our Bayes net model is built around hierarchical descriptions
of shapes in a domain, described in a language called LAD-
DER [Hammond and Davis, 2003]. The basic unit in this

language is a shape, which we use to mean a pattern recog-
nizable in a given domain. Shapes may be compound, i.e.,
composed of subshapes fit together according to constraints.
These subshapes also may be compound, but all shapes must
be non-recursive. A shape that cannot be decomposed into
subshapes (e.g., a line), is called a primitive shape. Primi-
tive shapes may have named subcomponents that can be used
when describing other shapes, e.g., the endpoints of a line,
“p1” and “p2”, used in Figure 1.

We refer to each shape description as a template with one
slot for each subpart. A shape hypothesis is a template with
an associated mapping between slots and strokes, generated
during the recognition process. Similarly, a constraint hy-
pothesis is a proposed constraint on one or more of the user’s
strokes. A partial hypothesis is a hypothesis in which one or
more slots are not bound to strokes.

To introduce our Bayes net model, we begin by considering
how to model a current source hypothesis (CS1) for the stokes
in Figure 1. A current source is a compound shape, so CS1 in-
volves two lower-level shape hypotheses—E1, an ellipse hy-
pothesis for stroke s1; and A1, an arrow hypothesis involving
strokes s2, s3 and s4—and one constraint hypothesis—C1, in-
dicating that an ellipse fit for stroke s1 contains strokes s2,
s3, and s4. A1 is also compound and is further broken down
into three line hypotheses (L1, L2 and L3) and six constraint
hypotheses (C2, ...,C7) according to the description of an ar-
row. Thus, determining the strength of hypothesis CS1 can be
transformed into the problem of determining the strength of a
number of lower-level shape and constraint hypotheses.

The Bayes net used to evaluate CS1 is shown in Figure 2.
There is one node in the network for each hypothesis; each
node represents a boolean random variable that is true if the
corresponding hypothesis is correct. The probability of each
hypothesis is influenced both through its children by stroke
data and through its parents by the context in which it appears,
allowing the system to handle noise in the drawing.

The nodes labeled O1, ...,O11 represent measurements of
the stroke data that correspond to the constraint or shape to
which they are linked. The variables corresponding to these
nodes have positive real numbered values that we discretize in
our implementation1. For example, the variable O2 is a mea-
surement of the squared error between the stroke s1 and the
best fit ellipse to that stroke. Its raw value (later discretized)
ranges from 0 to the maximum possible error between any
stroke and an ellipse fit to that stroke. The boxes labeled
s1, ...,s4 are not part of the Bayes net but serve to indicate
the stroke or strokes from which each measurement, Oi, is
taken (e.g., O2 is measured from s1). P(CS1 = t|ev) (or sim-
ply P(CS1|ev))2, where ev is the evidence observed from the
user’s strokes, represents the probability that the hypothesis
CS1 is correct.

The direction of the links may seem counterintuitive, but
there are two important reasons why the links are directed
from higher-level shapes to lower-level shapes instead of the
opposite direction. First, whether a higher-level hypothe-
sis is true directly influences whether a lower-level hypoth-

1The BN software we used did not support continuous variables.
2Throughout this paper, t means true, and f means false.



CS1

E1

L2L1

A1

O2 O5O4O3

L3 C3C2

O8O7O6

C4 C6C5

O11O10O9

C7

C1

O1

s1 s2 s4s3

Figure 2: A Bayes net to verify a single current source hy-
pothesis. Labels come from Figure 1.

esis is true. For example, if the arrow hypothesis A1 is
true, then it is extremely likely that all three line hypotheses,
L1,L2,L3, are also true. Second, this representation allows us
to model lower-level hypothesis as conditionally independent
given their parents, which reduces the complexity of the data
needed to construct the network.

Each shape description constrains its subshapes only rela-
tive to one another. For example, an arrow may be made from
any three lines that satisfy the necessary constraints. Based on
this observation, our representation models a symbol’s sub-
shapes separately from the constraints between them. For ex-
ample, node L2 represents the hypothesis that stroke s3 is a
line. Its value will be true if the user intended for s3 to be a
line, any line regardless of its position, size or orientation. C4
separately represents the hypothesis that the line fit to s3 and
the line fit to s4 are the same length.

The conditional independence between shapes and con-
straints might seem a bit strange at first. For example,
whether or not two lines are the same length seems to de-
pend on the fact that they are lines. However, observation
nodes for constraints are calculated in such a way that their
value is not dependent on the true interpretation for a stroke.
For example, when calculating whether or not two lines are
the same length, we first fit lines to the strokes (regardless
of whether or not they actually look like lines), then measure
their length. How well these lines fit the original strokes is
not considered in this calculation.

The fact that there is no edge between the constraint nodes
and the shapes they constrain has an important implication for
using this model to perform recognition: There is no guaran-
tee in this Bayes net that the constraints will be measured
between the correct subshapes because the model allows sub-
shapes and constraints to be detected independently. For ex-
ample, we want C4 in Figure 2 to indicate that L2 and L3
(the two lines in the head of an arrow) are the same length,
not simply that any two lines are the same length. To satisfy
this requirement, the system must ensure that O8 is measured
from the same strokes that O4 and O5 were measured from.
We use a separate mechanism to ensure that only legal bind-
ings are created between strokes and observation nodes.

The way we model shape and constraint information has
two important advantages for recognition. First, this Bayes
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Figure 3: A partial sketch of a family tree. Quadrilaterals (Q)
represent males (M); ellipses (E) represent females (F), and
arrows (A) indicate a parent-child relationship.

net model can be applied to recognize a shape in any size,
position and orientation. CS1 represents the hypothesis that
s1, ...,s4 form a current source symbol, but the exact posi-
tion, orientation and size of that symbol is determined directly
from the stroke data 3.

Second, the system can model competing higher-level in-
terpretations for lower-level shapes. For example, the system
may consider a stroke to be a line that is in turn part of ei-
ther an arrow or a quadrilateral. Because the line hypothesis
does not include any higher-level shape-specific constraint in-
formation, both an arrow hypothesis node and a quadrilateral
hypothesis node can point to this same line hypothesis node.
These two hypotheses then become alternate, competing ex-
planations for the line hypothesis. We further discuss how
hypotheses are combined below.

4 Recognizing a Complete Sketch
To recognize a complete sketch, we create a Bayes net similar
to the one above for each shape. We call each of these Bayes
nets a shape fragment because they can be combined to create
a complete Bayes net for evaluating the whole sketch.

Given a set of hypotheses for the user’s strokes (hypothe-
sis generation is described in [Alvarado and Davis, 2004] and
[Alvarado, 2004]), the system instantiates the corresponding
shape fragments and links them together to form a complete
Bayes net, called the interpretation network. To illustrate this
process, consider a piece of a network generated in response
to Strokes 6 and 7 in the example of Figure 3. Figure 4 shows
the part of the Bayes net representing the hypotheses that the
system generated for these strokes. Low level processing rec-
ognizes Strokes 6 and 7 as L-shaped polylines and breaks
each into two individual lines (L1...L4) that meet.

4.1 Linking Shape Fragments
When Bayes net fragments are linked during recognition,
each node Hn may have several parents, S1 . . .Sm, where each
parent represents a possible higher-level interpretation for Hn.
We use a noisy-OR function to combine the influences of all
the parents of Hn to produce the complete conditional proba-
bility table (CPT) for P(Hn|S1, . . . ,Sm). The noisy-OR func-
tion models the assumption that each parent can indepen-
dently cause the child to be observed. For example, a single

3Orientation-dependent symbols (e.g., a downward-facing ar-
row) can be recognized by including orientation-dependent con-
straints in their descriptions (e.g., vertical, below).



stroke might be part of a quadrilateral or an arrow, but both
interpretations would favor that interpretation of the stroke
as a line. We set P(Hn = f |S j = t) = 0 for all parents S j
in which Hn is a required subshape or constraint, and we set
P(Hn = f |Sk = t) = 0.5 for all parents Sk in which Hn is an
optional subshape or constraint. A consequence of these val-
ues is that S j = t ⇒ P(Hn|S1, . . . ,Sm) = 1 for any S j in which
Hn is required, which is exactly what we intended.

We experimented with a noisy-XOR construct, imple-
mented using a “gate node” similar to that described in
[Boutilier et al., 1996], but found that noisy-OR semantics
were simpler and in fact produced better results. In effect,
a noisy-OR node in a Bayes net with low prior probabilities
behaves as a non-aggressive XOR. The fact that one parent
is true does not actively prohibit the other parents from being
true, but it causes their probabilities to tend back to their prior
values because of the “explaining away” phenomenon.

4.2 Signal Level Noise

The bottom layer of the network deals with signal level noise
by modeling the differences between the user’s intentions and
the strokes that she draws. For example, even if the user
intends to draw L1, her stroke likely will not match L1 ex-
actly, so the model must account for this variation. Consider
P(O1|L1 = t) (recall that O1 is a discretized continuous val-
ued variable). If the user always drew perfect lines, this dis-
tribution would be 1 when O1 = 0 (i.e., the error is 0), and 0
otherwise. However, most people do not draw perfect lines
(due to inaccurate pen and muscle movements), and this dis-
tribution allows for this error. It should be high when O1 is
close to zero, and fall off as O1 gets larger. The wider the
distribution, the more error the system will tolerate, but the
less information a perfect line will provide.

The other distribution needed is P(O1|L1 = f ) which is the
probability distribution over line error given that the user did
not intend to draw an line. This distribution should be close to
uniform, with a dip around 0, indicating that if the user specif-
ically does not intend to draw an line, she might draw any
other shape, but probably won’t draw anything that resem-
bles an line. Details about how we determined the conditional
probability distributions between primitive shapes and con-
straints and their corresponding observation nodes are given
elsewhere [Alvarado, 2004].

4.3 Missing Strokes

A1 is a partial hypothesis—it represents the hypothesis that L1
and L2 (from Stroke 6) are part of an arrow whose other line
has not yet been drawn. Line nodes representing lines that
have not been drawn (e.g., L5) are not linked to observation
nodes because there is no stoke from which to measure these
observations. We refer to these nodes (and their correspond-
ing hypotheses) as virtual.

The fact that partial hypotheses have probabilities allows
the system to assess the likelihood of incomplete interpreta-
tions based on the evidence it has seen so far. In fact, even
virtual nodes have probabilities, corresponding to the proba-
bility that the user (eventually) intends to draw these shapes
but either has not yet drawn this part of the diagram or the

L1 L2 L3 L4L5

Stroke6

O1 O2

Q1A1

Constraints
for Q1

Observations

Constraints
for A1

Observations O3 O4

Stroke7

M1

A2

Constraints
for A2

Observations

L6

Figure 4: A portion of the interpretation network generated
while recognizing the sketch in Figure 3.

correct low-level hypotheses have not yet been proposed (be-
cause of low-level recognition errors). A partial hypothesis
with a high probability cues the system to examine the sketch
for possible missed low-level interpretations during the hy-
pothesis generation step.

5 Implementation and Bayesian Inference
Our system updates the structure of the Bayes net in response
to each stroke the user draws, using an off-the-shelf, open
source Bayes net package for Java called BNJ [bnj, 2004].

Generating and modifying the BNJ networks can be time
consuming due to the exponential size of the CPTs between
the nodes. We use two techniques to improve performance.
First, networks are generated only when the system needs to
evaluate the likelihood of a hypothesis. This on-demand con-
struction is more efficient than continuously updating the net-
work, because batch construction of the CPTs is often more
efficient than incremental construction. Second, the system
modifies only the portion of the network that has changed be-
tween strokes, rather than creating it from scratch every time.

We experimented with several inference methods and
found that loopy belief propagation (loopy BP) [Weiss, 1997]
was the most successful4. On our data, loopy BP almost al-
ways converged (messages initialized to 1, run until node val-
ues stable within 0.001). We further limited the algorithm’s
running time in two ways. First, we terminated the algorithm
after 60 seconds if it had not yet converged. Second, we al-
lowed each node to have no more than 8 parents (i.e., only 8
higher-level hypotheses could be considered for a single hy-
pothesis), ensuring a limit on the complexity of the graphs
produced. These restrictions had little impact on recognition
performance in the family tree domain, but for complex do-
mains such as circuit diagrams, more efficient inference algo-
rithms or graph simplification techniques are needed to im-
prove recognition results.

6 Application and Results
We applied our implemented system to two non-trivial
domains—family trees and circuits—and found that it is ca-
pable of recognizing sketches in both domains without re-
programming. Qualitative and quantitative evaluation of our

4Junction Tree [Jensen et al., 1990] was often too slow and
Gibb’s Sampling did not produce meaningful results.
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Figure 5: Part of three possible ground symbols.

system illustrates its strengths over previous approaches and
suggests some extensions.

Applying our system to a particular domain involves two
steps: specifying the structural descriptions for the shapes
in the domain, and specifying the prior probabilities for top-
level shapes and domain patterns, i.e., those that will not have
parents in the Bayes net. For each domain, we wrote a de-
scription for each shape and pattern in that domain. We hand-
estimated priors for each domain pattern and top level shape
based on our intuition about the relative prevalence of each
shape. For example, in family-tree diagrams, we estimated
that marriages were much more likely than partnerships, and
set P[Mar] = 0.1 and P[Part] = 0.001. These priors represent
the probability that a group of strokes chosen at random from
the page will represent the given shape and, in most cases,
should be relatively low. Although setting priors by hand can
be tedious, we found through experimentation that the sys-
tem’s recognition performance was relatively insensitive to
the exact values of these priors. For example, in the circuit
diagrams, increasing all the priors by an order of magnitude
did not affect recognition performance; what matters instead
is the relative values of the prior probabilities.

Our system is capable of recognizing simple sketches
nearly perfectly in both the family-tree and circuit domains.
We also tested its performance on more complex, real-world
data. As there is no standard test corpus for sketch recog-
nition, we collected our own sketches and have made them
available online to encourage others to compare their results
with those presented here [Oltmans et al., 2004]. In total, we
tested our system on 10 family tree sketches and 80 circuit
diagram sketches, with between 23 and 110 strokes each.

6.1 Qualitative Results
Qualitative analysis reveals that the Bayes net mechanism
successfully aggregates information from stroke data and
context, resolves inherent ambiguities in the drawing, and
updates its weighting of the various existing hypotheses as
new strokes are drawn. We show through an example that
the Bayes net scores hypotheses correctly in several respects:
it prefers to group subshapes into the fewest number of in-
terpretations, it allows competing interpretations to influence
one another, it updates interpretation strengths in response to
new stroke data, and it allows both stroke data and context to
influence interpretation strength.

To illustrate the points above, we consider in detail how the
system responds as the user draws the three sets of strokes
in Figure 5 (a ground symbol). To simplify the example,
we consider a reduced circuit domain in which users draw
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Line-1
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Figure 6: The Bayes net produced in response to the strokes
in each ground symbol in Figure 5. The shaded area shows
the network produced in response to the first two strokes.

Name P[Shape|stroke data]
after 2 strokes after 3 strokes

(a) (b) (c) (a) (b) (c)
Wire-1 0.4 0.41 0.41 0.4 0.4 0.42
Wire-2 0.4 0.38 0.38 0.4 0.4 0.38
Wire-3 N/A N/A N/A 0.4 0.4 0.1
Battery-1 0.51 0.51 0.51 0.09 0.1 0.91
Battery-2 N/A N/A N/A 0.09 0.1 0.0
Ground-1 0.51 0.51 0.51 0.95 0.94 0.03

Table 1: Posterior probabilities for part of the network in Fig-
ure 6 for each sketch in Figure 5.

only wires, resistors, ground symbols and batteries. Figure 6
shows the Bayes nets produced in response to the user’s first
two and first three strokes. After the first two strokes, the net-
work contains only the nodes in the shaded area; after three
strokes it contains all nodes shown. Continuous variables cor-
responding to observation nodes were discretized into three
values: 0 (low error: stroke data strongly supports the shape
or constraint), 1 (medium error: stroke data weakly supports
the shape or constraint), and 2 (high error: stroke data does
not support the shape or constraint).

Posterior probabilities are given in Table 1. For the rel-
atively clean ground symbol (Figure 5(a)), the stroke data
strongly supports all the shapes and constraints, so all shaded
nodes in Figure 6 have value 0. After the first two strokes,
the battery symbol and the ground symbol have equal weight,
which may seem counterintuitive: after two strokes the user
has drawn what appears to be a complete battery, but has
drawn only a piece of the ground symbol. Recall, however,
that the Bayes net models not what has been drawn, but what
the user intends to draw. After two strokes, it is equally likely
that the user is in the process of drawing a ground symbol. Af-
ter the third stroke, the ground symbol’s probability increases
because there is more evidence to support it, while the bat-
tery’s probability decreases. The fact that the ground symbol
is preferred over the battery illustrates that the system prefers
interpretations that result in fewer symbols (Okham’s razor).
Interpretations that involve more of the user’s strokes have
more support and get a higher score in the Bayes net. The fact
that the battery symbol gets weaker as the ground symbol gets
stronger results from the “explaining away” behavior in this
Bayes net configuration: each of the low-level components
(the lines and the constraints) are effectively “explained” by
the existence of the ground symbol, so the battery is no longer



needed to explain their presence.
Another useful property of our approach is that a small

amount of noise in the data is counteracted by the context
provided by higher-level shapes. The slightly noisy second
and third strokes in Figure 5(b) cause the values of SqErr-
2 and SqErr-3 to be 1 instead of 0 (all other shaded node
values remain 0). Despite this noise, after three strokes the
posterior probability of the ground symbol interpretation is
still high (0.94), because Line-1 and all of the constraints
are still strongly supported by the data. In addition, the
probabilities for Line-2 and Line-3 are high (both 1.0, not
shown in Table 1), indicating that the context provided by the
ground symbol provides support for the line interpretations
even when the evidence from the data is not as strong.

On the other hand, if the data is too messy, it causes
the probability of the higher-level interpretations to decrease.
The sketch in Figure 5(c) causes the value of SqErr-2 to be 1,
and SqErr-3 to be 2, and results in a low posterior probability
for Ground-1 (0.03) and a high posterior for Battery-1 (0.91),
because the hypothesis Line-3 is contradicted by the user’s
third stroke. For now, the third stroke remains uninterpreted.

6.2 Quantitative Results
We ran our system on all of the sketches we collected
and compared its performance to a baseline constraint-based
recognition system that used a fixed threshold for detect-
ing shapes and constraints and did not reinterpret low-level
shapes. We measured recognition performance by deter-
mining the number of objects identified correctly in each
sketch. Our system significantly outperformed the baseline
system (p � 0.001), correctly recognizing 77% (F=0.83) of
the shapes in the family tree diagrams and 62% (F=0.65) of
the shapes in the circuit diagrams, while the baseline system
correctly recognized 50% (F=0.63) and 54% (F=0.57).

While not yet real time, in general our system’s processing
time scaled well as the number of strokes increased. How-
ever, it occasionally ran for a long period. The system had
particular trouble with areas of the sketch that involved many
strokes drawn close together in time and space and with do-
mains that involve more complicated or overlapping symbols.
This increase in processing time was due almost entirely to
increase in Bayes net complexity.

We believe we can speed up loopy BP based on the obser-
vation that it repeatedly sends messages between the nodes
until each node has reached a stable value. When a stroke is
added, our system resets all messages to 1, essentially eras-
ing the work done the last time inference was performed, even
though most of the graph is unchanged. The algorithm should
instead begin with the messages that remain at the end of the
previous inference step.

7 Conclusion
We have described a model for dynamically constructing
Bayes nets to represent varying hypotheses for the user’s
strokes. Our model, specifically developed for the task of
recognition, allows both stroke data and contextual data to
influence the probability of an interpretation for the user’s
strokes. Using noisy-OR, multiple potential higher-level

interpretations mutually influence each other’s probabilities
within the Bayes net. The net result is a sketch recognition
approach that brings us a significant step closer to sketching
as a natural and powerful interface.
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