
SHADY : A Shape Description Debugger for Use in Sketch Recognition

Tracy Hammond and Randall Davis
MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)

MIT Building 32-(239,237), 32 Vassar St.
Cambridge, MA 02139

{hammond,davis} at csail.mit.edu

Abstract

Sketch recognition systems are currently being devel-
oped for many domains, but can be time consuming to
build if they are to handle the intricacies of each do-
main. LADDER is a language for describing how do-
main shapes are drawn, displayed, and edited in a sketch
recognition system for that domain. LADDER shape
descriptions can be automatically translated into JAVA
code to be compiled with a multi-domain sketch recog-
nition system to create a domain specific sketch inter-
face. In this paper we present SHADY , a graphical tool
to aid in the creation and debugging of LADDER shape
descriptions. SHADY allows sketch interface develop-
ers to enter new shape descriptions or debug previously
created descriptions, finding both syntactic and concep-
tual bugs. SHADY checks to see whether a shape de-
scriptions is over-constrained by allowing the developer
to draw sample shapes and then indicating which con-
straints are not met. This paper also describes work in
progress on debugging under-constrained descriptions
by automatically generating near-miss shapes.

Introduction
Pen-based sketch recognition interfaces are increasingly
common and are being built for a variety of domains, in-
cluding UML class diagrams, flowcharts, finite state ma-
chines, and course of action diagrams. These interfaces pro-
vide a more natural interaction than the traditional mouse
and palette tool, but can be quite time consuming to build
if they are to handle the intricacies of each domain. Our
philosophy proposes that rather than build a separate recog-
nition system for each domain, we instead build a single, do-
main independent recognition system that can be customized
for each domain. To build a sketch recognition system for
a new domain, the developer would need only write a do-
main description, describing how shapes are drawn, dis-
played and edited. This description would then be trans-
formed for use in the domain independent system. The in-
spiration for such a framework stems from work in speech
recognition and compiler compilers, which have been us-
ing this approach with some success (Zue & Glass 2000;
Costagliolaet al. 1995).

In previous work, we have built LADDER, a symbolic
language for describing how shapes are drawn, displayed,
and edited in a domain (Hammond & Davis 2003). We have

also built a translator, which takes LADDER shape descrip-
tions and transforms them into shape recognizers, editing
recognizers, and shape exhibitors for use in recognition, dis-
play, and editing of the domain shapes (Hammond & Davis
2004). The implementation of this translator and domain
independent sketch recognition system serves to show both
that such a framework is feasible and that LADDER is an
acceptable language for describing domain information.

Although efforts are being made to make LADDER as in-
tuitive as possible, LADDER shape descriptions can be dif-
ficult to describe textually. It is much more natural to draw
a shape than type out a verbal description. Veselova and
Davis have developed a program to generate descriptions au-
tomatically from a single drawn example (Veselova & Davis
2004). However, these automatically generated descriptions
may be imperfect, since it may be difficult for the computer
to perceive the intention of the developer. For instance, if the
developer draws a square, the developer may intend some-
thing as specific as a square or as general as a rectangle or
even a quadrilateral. Creating a hand-typed description may
be more time-consuming, but the developer can be specific
about the shape intended. The developer may also prefer a
hand-typed description because she can describe the shape
in a way that is most intuitive, (as many of the constraints
are overlapping, shapes can be described in several differ-
ent ways), and she may want to use intuitive variable names.
However, hand-typed descriptions also may contain errors.
We performed a user study where we asked 30 people to
describe shapes using both their natural language and in a
more structured language such as LADDER, and we found
both versions to contain a number of errors. Developers may
forget a constraint, allowing unintended shapes to be rec-
ognized, or they may add too many incorrect or conflicting
constraints, and the intended shape may not be recognized.

The contributions of the paper is SHADY , a graphical
debugging tool (shown in Figure 1) to help the developer
debug an LADDER shape description. SHADY debugs
improper syntax, over-constrained descriptions and under-
constrained descriptions. This paper describes completed
work on debugging over-constrained descriptions; we also
describe work in progress on debugging under-constrained
descriptions.



Figure 1: An incorrect arrow LADDER shape description being debugged by SHADY . The arguments in the second acuteDir
constraint are incorrectly flipped. The constraint should read (acuteDir shaft head2), indicating that the counter-clockwise angle
formed from the directional lines is acute.

(define shape Arrow
(components

(Line shaft)
(Line head1)
(Line head2))

(constraints
(coincident head1.p1 shaft.p1)
(coincident head2.p1 shaft.p1)
(acuteDir head1 shaft)
(acuteDir shaft head2)
(equalLength head1 head2)))

Figure 2: A correct arrow LADDER shape description.

Over-constrained Descriptions

We have created SHADY , a graphical tool (shown in Fig-
ure 1) to debug LADDER shape descriptions by determin-
ing if and how the description is over-constrained. If a shape
description is over-constrained it will produce a false nega-
tive, i.e., a drawn shape that should have been recognized
but was not. SHADY provides a draw panel for the devel-
oper to draw a positive example of the shape described. If
the shape is not recognized based on the description given,

SHADY highlights the failed constraint or constraints. The
developer can then decide to remove or adjust the specified
constraint(s).

Determining Failed Constraints

For any given shape and its description, there are many ways
that the variable names of the components can be assigned.
For example, the arrow described in Figure 2 has 48 possible
variable assignments.1

Each different variable assignment causes different con-
straints to be false. The system generates all possible vari-
able assignments and evaluates the user-provided constraints
for each of them. Figure 3 presents 3 of the 48 possible as-
signments. Figure 3a and b give only one false constraint,
where Figure 3c gives several false constraints.

1The three variables, shaft, head1, head2, can be assigned to the
three drawn lines (using combinatorics) inC(3, 3) = 3 ∗ 2 ∗ 1 = 6
different ways. Each of the lines can have their two endpoints
assigned in 2 ways (23), giving the total possible number of as-
signment to beC(3, 3) ∗ 23 = 48. (Notice that this number
grows quickly as the four lines of a rectangle can be assigned in
C(4, 4) ∗ 24 = 384 possible ways.)



Figure 3: Three different variable assignments for an arrow with the over-constrained descriptions from Figure 1 and their
failed constraints.

Selecting Variable Assignments
If SHADY were to display all of the possible variable assign-
ments and their failed constraints, the developer would be
overwhelmed. Instead, SHADY tries to choose the assign-
ment or small collection of assignments that most closely
matches what the developer intended.

In Figure 1 a developer actually intended to describe an
arrow as in Figure 2, but he mistyped one of the constraints.
The arguments in the second acuteDir constraint are incor-
rect. The constraint should read (acuteDir shaft head2), in-
dicating that the angle formed is acute if you 1) shift the
lines to collocate their p1 endpoints, and then 2) travel in a
counter clockwise direction from head2.p2 to shaft.p2.

We assume that the description given by the developer
is mostly correct, and use Occham’s razor2 to select the
variable assignments with the fewest failed constraints. If
there are several variable assignments containing the min-
imum number of failed constraints, SHADY chooses all of
them. In the case of Figure 3, SHADY chooses the variable
assignments represented by a and b.

Displaying the Failed Constraints
At this point, each of the selected variable assignments has
the same number of failed constraints, and SHADY can not
further distinguish between them. Often, because of sym-
metry in the drawn shape, different variable assignments can
give the same failed constraint(s). When this occurs SHADY

2Occham’s razor: ”one should not increase, beyond what is nec-
essary, the number of entities required to explain anything”

collapses the two assignments into one, selecting only one
of the variable assignments.

SHADY lists both the collection of failed constraints for
each chosen variable assignment, and it displays the failed
constraints visually on the drawn shape. In Figure 3a and 3b,
the failed constraints both represent the same angle between
the same two lines. Thus SHADY displays that failed con-
straint only once. SHADY also explains the failed constraint
in case the developer has misused it at the bottom of the
screen. Figure 1 shows a screen shot of the system telling
the developer which constraints have failed. Figure 4 pro-
vides another example of a more complicated hierarchically
defined shape being debugged.

Under-constrained Descriptions

Above we discussed implemented work debugging over-
constrained shape descriptions. The remainder of this pa-
per describes work not yet complete on debugging under-
constrained shape descriptions.

Once the shape description is determined not to be over-
constrained, we want to test whether it is under-constrained,
If so, drawn shapes other than the one intended will be rec-
ognized (giving false positives). To make sure the descrip-
tion is sufficiently constrained, SHADY will randomly gener-
ate several near-miss shapes and ask the developer whether
the shape shown is an acceptable instance of the shape.
Based on the answers given by the developer, SHADY will
suggest the addition of constraints when appropriate.



Figure 4: An armored infantry shape description from the domain of course of action diagrams being debugged with the
debugger.

Selecting Additional Constraints

We want SHADY to generate near-miss shapes, and want to
show as few shapes as possible to the developer to speed
the debugging process, and as a result choose the extra con-
straints for testing wisely. Selecting extra constraints at ran-
dom often simply collapses several points of the shape to a
single location.

SHADY should first determine constraints that may be
missing from the description. We propose to do this by hav-
ing SHADY first examine a positive example provided by
the developer. This could be a shape newly drawn for this
purpose, or preferably, the system should reuse a previously
drawn positive example such as one provided when testing
whether the description is over-constrained.

The positive example should be used to automatically
generate a description of the shape consisting of all of the
possible true constraints for the shape drawn. The right side
of Figure 5 shows several of the constraints that would be au-
tomatically generated for the description of the drawn arrow,
which contains all true constraints from the drawn example.

SHADY should match the user-provided constraints of the
arrow description (shown on the left side of Figure 5) to the
automatically generated constraints. The first step is to find

a variable-name matching between the two versions. We
know that such a variable matching exists because both sets
of constraints are based on the same drawn shape. There
may be more than one possible variable matching, but it is
enough to take the first one that works since the developer
will not see the matching chosen. Once SHADY finds the
variable-name matching, it should match the constraints. In
Figure 5 the matched constraints are labelled with a circle.

After we match the constraints, there are still many con-
straints that don’t actually provide any additional informa-
tion beyond those of the originally matched constraints. For
instance, acute is a less-constrained version of acuteDir. The
redundant constraints have been labelled in Figure 5 with a
rectangle.

Once SHADY eliminates all of the constraints already
present in or redundant to the user-provided description,
it should select which constraints were most likely omit-
ted. We plan to group and order the remaining constraints
according to their perceptual importance using techniques
from (Veselova & Davis 2004). Connections (coincident,
meet, etc.) have the highest perceptual importance, followed
by orientations (horizontal, posSlope, acute, etc.). Rela-
tive lengths (equalLength, longer, etc.) have a low percep-
tual importance. Based on the ordering, several constraints



Figure 5: User-provided and generated constraints for an arrow.

should be chosen to determine whether they have been mis-
takenly left out of the description. We also want to make
sure SHADY checks for constraints that are more likely to be
forgotten, such as those of low perceptual importance.

When selecting the constraints to check for, it is important
to note that we do not need to check for all of the remaining
true constraints. Many of the constraints are related to each
other because of the shape, and thus only one of the related
constraints needs to be checked. For instance, (horizontal
line1), (negSlope line2), and (posSlope line3) are all related
constraints. When shifting line1 to not be horizontal as we
did in Figure 6b, we caused the other two constraints to also
be false. Thus, if the developer says that Figure 6b is an
example of an arrow, we do not need to test the other two
constraints.

Based on the generated constraints displayed in Figure 5,
SHADY may chose to check if the following three constraints
are missing: (perpendicular line2 line3), (horizontal line1),
(longer line1 line2). To determine if these constraints are
missing from the description, the system should generate
three near-miss shapes (shown in Figure 6, one to test each
of the suggested constraints. Perceptually the first two gen-
erated shapes, testing the constraints (perpendicular line2
line3) and (horizontal line1), are still arrows, implying that
line2 and line3 don’t have to be perpendicular and that line3
does not have to be horizontal. However, the last arrow with
the short shaft is not an arrow, implying that we should add
the constraint (longer line1 line2) to our shape description.

Generating Shapes

For each extra constraint selected above, SHADY should au-
tomatically generate a shape that satisfies all of the user-

Figure 6: Possible near-miss shapes for an arrow.

provided constraints and does not satisfy the additional se-
lected constraint. SHADY should then ask the developer
whether the automatically generated shape is a positive ex-
ample. We know that the added constraint was true in the
drawn positive example. If the generated shape is a positive
example, we do not want to add the constraint because it is
false in a positive example (the generated shape) and true in
another positive example (the original drawn shape). How-
ever, if the generated shape is a negative example, we do
want to add the constraint.

SHADY will use a constraint solver to generate shapes.
Each shape description specifies the components that make
up a shape (for instance, an arrow is made up of three



lines). In principle, each component has an algebraic equa-
tion representing it. SHADY will use this same equation in
its representation. For instance, the equation of a line is
Ax + By + C. 3 Each constraint also has an algebraic rep-
resentation, such as those represented in Figure 7. For ex-
ample, if two points are coincident, then their x and y values
are equivalent. All of the constraints are listed in Figure 7
with their integer x y values as inputs rather than the higher
order points or shapes that are used in the shape description.

We are building a constraint solver specifically for use
in sketch recognition that takes the algebraic equations rep-
resented by a shape description made up of solely of lines
and reduces the expression to find the number of free vari-
ables. Creating non-linear constraints solvers (which would
be used to solve higher order equations such as those for
curves and arcs) is still a hard problem, thus we are limit-
ing our constraint solver to solving linear constraints. There
are also some constraints which may prove more difficult to
solve for. For instance, constraints such as contains, which
tests if one shape is inside of another, is difficult to specify
by a simple equation. The final step for generating a shape
is to specify random values for each of the free variables and
display in for the user.

Re-evaluating Over-constrained Shapes
Once we complete our method for generating near-miss
shapes to help determine whether a description is under-
constrained, we hope to use the same method to determine
whether a description is over-constrained. We think hav-
ing SHADY generate several shapes will be an advantage
over asking the user to draw several examples. First, we
think it will be less work for the developer to simply ac-
knowledge whether or not a shape generated is what they
intended. Also, we can show several shapes simultaneously
speeding the process. Second, it is quite possible that the
developer may draw several shapes, but that the description
is still over-constrained because the developer never draws
a shape that conflicted with the over-constraint. By generat-
ing intuitive near misses, we hope that we can better refine
the exact shape that the developer intends, requiring fewer
clarifications by focusing the questions to the developer.

We plan to perform a user study to determine what con-
straints are commonly forgotten. SHADY will be able to use
this knowledge to generate careful near miss shapes.

Related Work
Previous Work in our Group
This work is part of a larger effort to create a multi-domain
recognition system. We created 1) a simple multi-domain
recognition system (Hammond & Davis 2004), LADDER, a
language for describing how shapes are to be recognized,
displayed, and edited in a domain (Hammond & Davis

3We use an equation with 3 unknowns rather than the familiar
y = mx + b because we need to be able to handle vertical lines.
Once we are able to determine whether or not the line is vertical, we
are able to simplify the equation again to one with fewer unknowns
using one of the additional rules, such as those listed at the bottom
of Figure 7.

..

Line (x1, y1) (x2, y2)
Ax1 + By1 + C = 0
Ax2 + By2 + C = 0

coincident (x1, y1) (x2, y2)
x1 = x2

y1 = y2

equallength(x1, y1 x2, y2) (x3, y3, x4, y4)
(y2 − y1)2 + (x2 − x1)2 = (y4 − y3)2 + (x4 − x3)2

angle(x1, y1) (x2, y2) angle
(y2 − y1)/(x2 − x1) = tan(angle)

dirangle (x1, y1) (x2, y2) angle
atan2(y2 − y1, x2 − x1) = angle
(y2 − y1)/(x2 − x1) = tan(angle)
if(y2 − y1)then (0 < a < π)

horizontal (x1, y1) (x2, y2)
y1 = y2

vertical (x1, y1) (x2, y2)
x1 = x2

acute(x1, y1) (x2, y2)
(y2 − y1)/(x2 − x1) > 0
(y2 > y1 && x2 > x1)or(y2 < y1 && x2 < x1)

obtuse(x1, y1) (x2, y2)
(y2 − y1)/(x2 − x1) < 0
(y2 < y1 && x2 > x1)or(y2 > y1 && x2 < x1)

acutedir (x1, y1) (x2, y2)
y2 > y1

x2 > x1

obtusedir (x1, y1) (x2, y2)
y2 > y1 && x2 < x1

Additional Rules:
if x1 = x2, thenA = 1, B = 0, C = −x1

if y1 = y2, thenA = 0, B = 1, C = −y1

elseB = −1, A = (y2 − y1)/(x2 − x1),
C = −y1 −A ∗ x1

Figure 7: Algebraic Equations for the linear constraints.

2003), and a code generator that translates a LADDER
shape description into JAVA code and, when compiled along
with the multi-domain recognition system, creates a domain-
specific recognition system (Hammond & Davis 2004). Al-
varado and Davis built a more sophisticated multi-domain
recognition system that performs bottom-up and top-down



recognition with the help of Bayesian networks (Alvarado
& Davis 2004). Sezgin develops techniques for improving
recognition efficiency during the translation process (Sezgin
2003). Cates is improving the accuracy of low-level recog-
nizers (Cates & Davis 2004). Other people in the project
have explored adding speech and gesture recognition, re-
spectively (Adler & Davis 2004; Eisenstein & Davis 2003).

Multi-Domain Recognition System Debugging
(Long 2001) has created a multi-domain recognition system
where the developer can specify the shapes to be recognized
in a domain by drawing them. The system helps the devel-
oper debug shapes by letting her know which shapes are sim-
ilar and may be confused with other shapes causing recog-
nition problems. (Long 2001) is solving a different problem
than what is discussed in this paper in that they allow devel-
opers to debug the graphical vocabulary where ambiguity
is a bug. (Gross 1996) have created a multi-domain recog-
nition system, but they have no methods for debugging the
shapes specified within them.

Geometric Constraint Solvers
A lot of work has been done on constraint solvers in general.
The University of Washington created the Cassowary geo-
metric constraint solver (Badros, Borning, & Stuckey 2001).
Stahovich used an off the shelf constraint solver to solve
mechanical engineering constraints to generate geometries
from constraints (Stahovich 1996).

Other Future Work
A domain description consists of several shape descriptions,
so it is also helpful to determine whether a description is
similar to a previous description, to help debug shapes and
prevent ambiguity. We would like SHADY to tell the devel-
oper if a shape description is equivalent or possibly can be
confused with another description as in (Long 2001). Also,
shape descriptions can be described hierarchically, making
them simpler to understand. SHADY will tell the developer
when a shape description is a sub- or super- shape descrip-
tion of another previously defined shape description. By
comparing shape descriptions to other shape descriptions we
can relax some of the shape constraints when the shape is
easily distinguishable without it, which we hope will help to
improve recognition in cases of very messy sketching.

Conclusion
We are building SHADY , a graphical tool to aid in the cre-
ation and debugging of LADDER shape descriptions, which
are written by developers for use in a domain independent
sketch recognition system. SHADY allows developers to
type new descriptions and debug previously created descrip-
tions, finding both syntactical bugs and conceptual bugs.
SHADY checks to see if a description is over-constrained
by allowing the developer to draw sample shapes and in-
forming the developer which constraints are incorrect. This
paper also describes work in process for debugging under-
constrained shape descriptions.

Acknowledgements
The authors would like to thank Michal Karczmarek and Vi-
neet Sinha for their help in reviewing this paper. The authors
would also like to thank the members of the Design Ratio-
nale Group at MIT, including Michael Oltmans, Christine
Alvarado, Jacob Eisenstein, Metin Sezgin, Aaron Adler, and
Sonya Cates, for their help in discussing the ideas presented
in this paper.

Research Support
This work is supported by the MIT/Microsoft iCampus
initiative, MIT’s Project Oxygen, and Intel Corporation.

References
Adler, A., and Davis, R. 2004. Speech and sketching for multi-
modal design. InProceedings of the 9th International Conference
on Intelligent User Interfaces, 214–216. ACM Press.

Alvarado, C., and Davis, R. 2004. Sketchread: A multi-domain
sketch recognition engine. InProceedings of UIST ’04.

Badros, G. J.; Borning, A.; and Stuckey, P. J. 2001. The cas-
sowary linear arithmetic constraint solving algorithm. InACM
Transactions on Computer Human Interaction, volume 8(4), 267–
306.

Cates, S., and Davis, R. 2004. New approach to early sketch
processing. InAAAI Symposium : Making Pen-Based Interaction
Intelligent and Natural.

Costagliola, G.; Tortora, G.; Orefice, S.; and Lucia, D. 1995.
Automatic generation of visual programming environments. In
IEEE Computer, 56–65.

Eisenstein, J., and Davis, R. 2003. Natural gesture in descrip-
tive monologues. InUIST’03 Supplemental Proceedings, 69–70.
ACM Press.

Gross, M. D. 1996. The electronic cocktail napkin - a compu-
tational environment for working with design diagrams.Design
Studies17:53–69.

Hammond, T., and Davis, R. 2003. LADDER: A language to
describe drawing, display, and editing in sketch recognition.Pro-
ceedings of the 2003 Internaltional Joint Conference on Artificial
Intelligence (IJCAI).

Hammond, T., and Davis, R. 2004. Automatically transforming
symbolic shape descriptions for use in sketch recognition.Pro-
ceedings of the Nineteenth National Conference on Artificial In-
telligence (AAAI-04).

Long, A. C. 2001.Quill: a Gesture Design Tool for Pen-based
User Interfaces. Eecs department, computer science division,
U.C. Berkeley, Berkeley, California.

Rubine, D. 1991. Specifying gestures by example. InComputer
Graphics, volume 25(4), 329–337.

Sezgin, T. M. 2003. Recognition efficiency issues for freehand
sketches. Proceedings of the 3nd Annual MIT Student Oxygen
Workshop.

Stahovich, T. 1996. Sketchit: a sketch interpretation tool for con-
ceptual mechanism design. Technical report, MIT AI Laboratory.

Veselova, O., and Davis, R. 2004. Perceptually based learning
of shape descriptions.Proceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI-04).

Zue, and Glass. 2000. Conversational interfaces: Advances and
challenges.Proc IEEE1166–1180.


