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ABSTRACT
Sketch interfaces provide more natural interaction than the
traditional mouse and palette tool, but can be time con-
suming to build if they have to be built anew for each new
domain. A shape description language, such as the LAD-
DER language we created, can significantly reduce the time
necessary to create a sketch interface by enabling automatic
generation of the interface from a domain description. How-
ever, structural shape descriptions, whether written by users
or created automatically by the computer, are frequently
over- or under- constrained. We present a technique to de-
bug over- and under-constrained shapes using a novel form
of active learning that generates its own suspected near-miss
examples. Using this technique we implemented a graphical
debugging tool for use by sketch interface developers.

Categories and Subject Descriptors: I.2.6 Comput-
ing Methodologies, Artificial Intelligence, Learning [Concept
learning] I.2.10 Computing Methodologies, Artificial Intel-
ligence, Vision and Scene Understanding [Perceptual rea-
soning] [Representations, data structures, and transforms]
[Shape] D.2.2 Software, Software Engineering, Design Tools
and Techniques [User interfaces] I.2.4 Computing Method-
ologies, Artificial Intelligence, Knowledge Representation For-
malisms and Methods [Representations (procedural and rule-
based)] [Representation languages]

General Terms: Algorithms, Design, Human Factors, Lan-
guages

Keywords: near-miss, structural description, shape de-
scription, ladder, active learning, sketch recognition, user
interfaces

1. INTRODUCTION
Pen-based sketch recognition interfaces are increasingly

common and are being built for a variety of domains, in-
cluding flowcharts, UML class diagrams, and circuit dia-
grams. These interfaces provide a more natural interaction
than traditional mouse and palette tools, but can be quite
time consuming to build if they are to handle the intricacies
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of each domain. Rather than build a separate recognition
system for each domain, our approach is to build a single,
domain independent recognition system that can be cus-
tomized for each domain. In this approach, building a sketch
recognition system for a new domain requires only writing a
domain description, describing how shapes are drawn, dis-
played and edited. This description is then transformed for
use in the domain independent system. The inspiration for
such a framework stems from work in speech recognition
and compiler compilers, which have used this approach with
some success [11][2][9].

LADDER is a symbolic language for describing how shapes
are to be recognized, displayed, and edited in a domain [4].
The language allows developers to provide a structural de-
scription of a shape. Because the description, and thus
recognition, is based on what the shape looks like rather
than how it is drawn, sketchers can draw the shape as they
would naturally, using any number, direction, or order of
strokes. These shape descriptions can automatically be trans-
lated into recognizers, exhibitors, and editors for use in a
multi-domain recognition system [5].

As the sketch recognition interface is produced directly
from the shape descriptions, we clearly need to be sure that
the descriptions contain exactly the geometric relationships
that characterize each symbol. Descriptions with too few
relations (constraints) will recognize non-examples of the
symbol (false positives), while descriptions with too many
relations will produce false negatives, not permitting the
degree of variation in a symbol‘s appearance that is routinely
accepted by people using that graphical language.

Despite being designed to be intuitive, LADDER shape
descriptions can still be difficult to write. It is much more
natural to draw a shape than type a verbal description.
While the work in [8] shows that descriptions can be gen-
erated automatically from a single example, these are often
imperfect, as it is difficult for the computer to infer the in-
tent of the developer. For instance, the developer may draw
a square, when intending something as specific as a square
or as general as a rectangle or even a quadrilateral.

The alternative - creating a description by hand - may
be more time-consuming, but the developer can be specific
about the shape intended. The developer may also prefer a
manual description because she can describe the shape in a
way that is intuitive (e.g., matches her mental model of the
shape).

But manual descriptions may also contain errors. In a
user study we asked 30 people to describe shapes using both
natural language and a more structured language (similar



Figure 1: When asked to draw many examples of
a particular shape in a user study, users tended to
draw the shape in the same fashion repeatedly.

(define shape Square
(components

(Line top)
(Line left)
(Line bottom)
(Line right))

(constraints
(horizontal top)
(horizontal bottom)
(vertical left)
(vertical right)
(equalLength left right)
(equalLength top bottom)) )

Figure 2: An under-constrained definition for a
square. It does not specify that all four sides need to
be the same (which could be rectified by including
the constraint equalLength top left).

to LADDER), and found errors in both types of descrip-
tions. Developers may forget a constraint, allowing unin-
tended shapes to be recognized, or they may add too many
incorrect or conflicting constraints. As a result, the intended
shape may not be recognized.

In this paper we describe a visual debugger of shape de-
scriptions using a novel form of active learning [1] that auto-
matically generates its own suspected near-miss examples.
The system first asks for a hand-drawn positive example,
then aims to learn a structural description that describes
the hand drawn shape. To do this, the system generates
near-miss shapes to be classified by the developer as pos-
itive or negative examples. A near-miss shape is a shape
that differs from the initial hand drawn positive example in
only one aspect. Because the near-miss differs in only one
aspect of the description, only one revision is possible [10],
simplifying the learning/debugging process.

Most systems that learn from near-miss examples expect
the user to provide those examples. A previous method for
debugging over-constrained descriptions [6] asked the devel-
oper to draw several examples, which were used to refine
the description. However, when we performed a user study
of 9 people and asked them to describe several examples of
a shape, we found that the examples given by people were
non-informative: they were typically very similar to the orig-
inal drawn shape. (Figure 1 gives an example of several ar-
rows drawn by one user.) The problem with the technique
described in [6] - which is essentially debugging via user-
selected test cases – is that the user may never draw the
shape in a way that exposes the bug in the description. It is
also unlikely that the developer will draw such examples, as
we are asking her to illustrate the faults in the description,
and if she were aware of such faults, she would simply edit
the description.

2. TYPES OF ERRORS
Errors can be of two types: syntactic and conceptual. Our

debugger handles syntactically malformed expressions using

(define shape Rectangle
(components

(Line top)
(Line left)
(Line bottom)
(Line right))

(constraints
(horizontal top)
(horizontal bottom)
(vertical left)
(vertical right)
(equalLength left right)
(equalLength top bottom))
(equalLength top left) )

Figure 3: An over-constrained definition for a rec-
tangle. It contains the erroneous constraint (equal-
Length top left), instead, defining a square.

Figure 4: Hand drawn positive example and descrip-
tion.

common techniques that are not the focus of this paper. We
handle conceptual errors, which can be further sub-divided
into two types: an omitted constraint yielding an under-
constrained description, or an erroneous constraint produc-
ing an over-constrained description. A simple example of an
under-constrained description is given in Figure 2, where the
definition for a square fails to require all four sides to be the
same length (i.e., it is missing (equalLength top left)).
An example of an over-constrained shape description is given
in Figure 3, where the definition of a rectangle contains the
erroneous constraint (equalLength top left). We don’t
consider substitution errors (e.g., (vertical top) instead
of (horizontal top)) to be an additional error type, rather,
we consider them to be the combination of an over-constrained
definition (the vertical constraint should be removed) and
an under-constrained definition (the horizontal constraint
should be added). Redundant constraints (where both are
true, but one is not necessary) are not considered errors as
they do not affect the correct recognition of the shape.

3. INITIAL CONDITIONS
Our approach needs a positive hand-drawn example and

a description that will correctly recognize that one example
(Figure 4). The developer can chose to type the description
or have one generated automatically from the hand-drawn
example using techniques developed by our group [8]. In
either case, descriptions are built from the vocabulary of
constraints listed in Appendix A.

We start by describing the first steps of the debugging
process for user-typed descriptions, because these require
initial debugging steps not required for machine-generated
descriptions.

3.1 Debugging User-Typed Descriptions
User-typed descriptions are first checked for syntactic va-

lidity. Our debugger GUI has a built-in syntax checker,
making it easy for users to avoid this simple class of error
(see Figure 5). Users can type whatever they want, but in-
correct syntax is turned red. This gives them some freedom
to define constraints using shapes they haven’t yet added



Figure 5: A screen shot of the GUI used to enter in
typed descriptions of a shape. The GUI automati-
cally checks and controls for correct syntax.

to the domain list, but plan to later. It tells them that
what they have typed is incorrect, but tries not to interfere
with their actions in any way (which would be constricting
and annoying). To further aid the developer, the GUI has
an auto-complete drop-down box for the component types
and constraint names. Once components are entered, those
components are automatically added to the list of possible
arguments for each constraint. When a constraint is chosen,
the number of arguments available for entry automatically
changes to reflect the number of arguments for that con-
straint. Also each argument drop-down box has a dynami-
cally changing list that reflects the possible shapes that are
of the appropriate type (e.g., the argument drop-down box
for the vertical constraint only lists the accessible lines).
This helps to ensure that the user types a syntactically valid
shape description.

We begin checking the description for conceptual errors
by generating a recognizer from the description (using tech-
niques from [5]). If this (known to be correct) example is not
recognized, the description must be over-constrained and we
start correcting it.

The first step is to find a good match between the typed
description and the drawn shape, i.e., a set of bindings that
associates variables in the description with geometric objects
in the drawn shape. The system does this by generating all
possible variable assignments and evaluating the constraints
in the description for each such set of bindings. (For any
given shape and its description, there are many ways that
the variable names of the components can be assigned. For
example, the arrow described in Figure 7 has 48 possible
variable assignments.1) The system then chooses the vari-
able assignment with the fewest failed constraints, applying

1The three variables, shaft, head1, head2, can be assigned
to the three drawn lines (using combinatorics) in P (3, 3) =
3∗2∗1 = 6 different ways. Each of the lines can have its two
endpoints assigned in 2 ways (23), giving the total possible

Figure 6: A screen shot of the GUI used to remove
false constraints from a hand typed description to
match the drawn example.

Occham’s razor on the assumption that the description is
mostly correct . The system displays the subcomponents of
the failed constraints in red and asks the developer if the
indicated failed constraints could be removed to correct the
description. If there are several variable assignments con-
taining the minimum number of failed constraints, the sys-
tem chooses all of them and displays the collection of failed
constraints one at a time. A screen shot of this process is
shown in Figure 6.

The user is required to remove enough constraints to per-
mit their description to recognize the initial hand-drawn
shape. This ensures that we start with a positive (hand-
drawn) example, and a description capable of recognizing
it.

3.2 Automatically Generating a Description
If the initial description is generated by the system, it is

guaranteed to recognize the hand-drawn example, because
we generate descriptions from a list of all of the constraints
true of the hand-drawn example. This description is (triv-
ially) guaranteed to recognize the hand-drawn example, but
not trivial to create: the list of all true constraints is typ-
ically quite long, containing as many as several thousand
constraints. In response we have developed an extended set
of heuristics (see Appendix B) for pruning this list to keep
it both smaller and focused on constraints likely to capture
the important geometric properties of the shape.

3.3 The Initial Description
The important point now is that whether we start with

a user-typed description or one generated by the system,
at this point we now have a description that is known to
recognize the hand-drawn positive example. Hence the de-
scription is known not to be over-constrained with respect
to the single example we have seen so far.

4. OVER-CONSTRAINED DESCRIPTIONS
The challenge we now face, however, is that while the

initial description may recognize the initial hand-drawn ex-

number of assignment to be P (3, 3) ∗ 23 = 48. (Notice that
this number grows quickly as the four lines of a rectangle
can be assigned in P (4, 4) ∗ 24 = 384 possible ways.)



ample, both of them may be overconstrained compared to
the actual concept for the shape. This occurs if the initial
example drawn by the user is too specific. The arrow in Fig-
ure 2, for example, happens to have two perpendicular lines
at its head; it is a positive example of an arrow, but overcon-
strained in the sense that a figure without a perpendicular
head is still an arrow. Hand-drawn examples will almost
always be over constrained because the sketcher is required
to make arbitrary choices. Even if the sketcher had drawn
an arrow with a non-perpendicular head, the initial hand-
drawn example may still be over constrained as an acute (or
obtuse) constraint would now be generated instead.

4.1 Constraint Candidate List
Earlier we indicated that we generate the complete list

of constraints true of the initial sketch. This list is saved
and used as the initial value for a list we call the constraint
candidate list. Each time a positive example shape is en-
countered, we remove from the constraint candidate list any
constraints not true of the new positive example (any con-
straint not true of a positive example cannot be true of the
concept).

We also generate a list of constraints known to be part
of the correct description and lists of candidates that might
be part of the correct description. We generate a list of
constraints known to be part of the correct description by
examining negative examples: Each time a negative example
shape is encountered, we construct a list of the constraints
that are in the constraint candidate list, but are not true
of the negative example shape. We know for certain that
at least one constraint in this list is part of the correct de-
scription, because it correctly classifies the new example as
negative. If this list contains only one constraint, we know
that that constraint is a required part of the desired descrip-
tion. If, on the other hand, the list contains more than one
constraint, that list is added to the collection of candidate
constraints that might be part of the correct description.2

Elements of this collection (lists with more than one con-
straint) may eventually be reduced to one constraint when
some of the constraints are removed after a positive example
shape.

4.2 Initial Over-constrained Testing
Because it is often the case that shapes can be rotated

and scaled, we first rotate and scale the shape and present
several examples all at once to the user. In the case of
scaling, the developer is asked to indicate the status of each
example individually; the individual positive and negative
examples are handled as in the previous section.

For rotation, the user is permitted only to say whether or
not all of the examples are positive. (We currently do this
in order to avoid problems with shapes having rotational
symmetry.) If the user indicates that all the examples are
positive, they are handled in the fashion described in the
previous section.

4.3 Testing Other Constraints

2Lists frequently contain more than one constraint because
constraints are interrelated in the sense that one constraint
cannot be falsified without falsifying another: an example
shape in which two lines are constrained not to meet, for
instance, is necessarily also an example in which those two
lines are not connected.

(define shape Arrow
(components

(Line shaft)
(Line head1)
(Line head2))

(constraints
(coincident head1.p1 shaft.p1)
(coincident head2.p1 shaft.p1)
(acuteDir head1 shaft)
(acuteDir shaft head2)
(equalLength head1 head2)
(perpendicular head1 head2)))

Figure 7: An over-constrained description of
an arrow; it should not contain the constraint
(perpendicular head1 head2).

The system checks to see whether the description is over-
constrained by examining each constraint in turn and gen-
erating a suspected near-miss shape to test whether that
constraint is necessary. For example, in the description in
Figure 7 we test the six listed constraints. 3 Because the
topology of a shape is considered to be the most perceptual
property of a shape[8], we test all coincident constraints first,
presenting several examples all at once to the developer. We
modify the constraint candidate list to take into account the
positive and negative examples as specified by the developer.

A constraint is tested by creating a description in which
the constraint is replaced by its negation, then generating
a shape that fits this description (using the shape genera-
tion technique described below). Figure 8 shows the shapes
generated when testing (coincident head1.p1 shaft.p1)

and (perpendicular head1 head2).
Imagine that the developer indicates that the shape gen-

erated by the revised description does not agree with her
mental model of an arrow (as in the case of testing the
coincident constraint of Figure 8). This shows that the
constraint in question is a necessary part of the description
because we have a positive example where the constraint is
met (the originally hand drawn shape) and a negative ex-
ample in which the only thing changed is that the constraint
is now not met (the generated shape).

Imagine on the other hand that the developer indicates
that the shape generated by the revised description does
agree with her mental model of an arrow (as in the case
of testing the perpendicular constraint of Figure 8). Thus,
the original description was over-constrained: the constraint
is superfluous since we have a positive example in which the
constraint is not met.

5. UNDER-CONSTRAINED DESCRIPTIONS
Once the shape description is known not to be over-constrained,

we check whether it is under-constrained, by making a list
of possible missing constraints. As the list of possible miss-
ing constraints can be very large, we generate it by the same
filtering process used in Section 3.2 and described in Appen-
dix B, with several additional filters: The system removes
constraints related to the constraints already listed in the
description by removing all constraints that already exist
in the description, removing constraints that are more gen-
eral than those that exist in the description, and removing
constraints that follow transitively from those in the descrip-

3It is possible that a single constraint, when made false,
produces a set of inconsistent constraints. In this case, we
remove a related constraint (which is defined to be a con-
straint in the same group - as defined in Section B.8 - sharing
an argument) and retest.



Figure 8: Near-miss examples testing whether de-
scription is over- constrained.

Figure 9: Hierarchical examination of the contains

constraint.

tion. (This process uses the same code and rules for elim-
inating constraints as in Appendix B.) As a consequence
of the limit imposed by the filtering process in Appendix
B, we are left with n2 new constraints to test for possible
accidental exclusion.

We test each of those n2 constraints to determine whether
it is missing from the description by adding its negation to
the description (e.g., NOT (horizontal shaft)), then gen-
erating a shape based on this description. Figure 10 shows
two generated possible near-miss examples testing constraints
(horizontal shaft) and (longer shaft head1).

Imagine that the developer indicates that the non-horizontal
example in Figure 10 agrees with her mental model of an ar-
row. Because we have a positive example of an arrow with
the constraint met (the original hand drawn shape) and not
met (the generated shape), we know the constraint should
not be included (i.e., it was an accident that the original
arrow happened to be drawn horizontal).

However, imagine that the developer indicates that not
longer example in Figure 10 is not an arrow. In this case
we have two examples with identical descriptions except for
the longer constraint; the (hand-drawn) shape in which the
constraint is met is a positive example, and the (generated)
shape in which the constraint is not met is a negative exam-
ple. This indicates that the constraint is necessary to the
concept of the shape.

Figure 10: Possible near-miss shapes for an arrow.

5.1 Generating Shapes
As essential part of the process above is the ability to

show the user an example of a shape that meets the revised
set of constraints. Satisfying this new list of constraints
will require modifying the current location, size, or orienta-
tion of the components in the original, hand-drawn example.
Because the positions of the shape’s components, its prop-
erties, and its constraints are all interrelated, we need to
generate and solve algebraic equations demonstrating these
relations. To generate a shape we first convert each shape’s
components, properties (such as width, height, area), and
constraints into a set of algebraic equations. These equa-
tions are then solved to find a mathematical solution repre-
senting a shape that satisfies the description.

When displaying the generated shape, we want each con-
straint in the description we are testing to be perceptually
obvious. Therefore, for each constraint we have hard coded
some additional thresholds that must be true. For instance,
when generating a shape in which two lines should not have
equal length, we require that one shape must be 1.5 times
the length of the other.

We translate each shape, its components, and its proper-
ties using the schema listed below. This produces a set of
equations describing the object. For example, one equation
produced is arrow.area == arrow.width * arrow.height.

• Minimize: To prevent the shape from shifting too much,
we minimize the distance from the value in the initial hand
drawn example to the final solved value for each component.

• Require: To prevent the lines from collapsing to a point,
all lines must have a length greater than 20 pixels.

• We define the bounding box of a shape (minx, miny, maxx,
maxy), so that we can enforce area-related constraints such
as equalArea, larger, contains, as follows:

– Define shape.minx recursively:
if (shape is line):

∗ Require: shape.minx <= shape.p1.x

∗ Require: shape.minx <= shape.p2.x

else for each component:

∗ Require: shape.minx <= shape.component.minx

– Define shape.miny, shape.maxx, shape.maxy similarly

– Minimize: shape.maxx

– Minimize: shape.maxy

– Minimize: -1 * shape.minx

– Minimize: -1 * shape.miny

• Require: shape.width == shape.maxx - shape.minx

• Require: shape.height == shape.maxy - shape.miny

• Require: shape.area == shape.width * shape.height

• Require: shape.center.x == (shape.minx + shape.maxx)/2

• Require: shape.center.y == (shape.miny + shape.maxy)/2

Next we translate each constraint into a set of equations
on the variables defined above. For example:

horizontal line1 becomes line1.p1.y == line1.p2.y

contains shape1 shape2 become
(shape1.minx < shape2.minx) &&
(shape1.miny < shape2.miny) &&
(shape1.maxx > shape2.maxx) &&
(shape1.maxy > shape2.maxy)

equalLength line1 line2 becomes
(line1.p1.x − line1.p2.x)2 +
(line1.p1.y − line1.p2.y)2 ==
(line2.p1.x − line2.p2.x)2 +
(line2.p1.y − line2.p2.y)2



not sameX shape1 shape2 becomes
(shape1.center.x + 20 < shape2.center.x) ||
(shape1.center.x > shape.center.x + 20)
(We add an additional 20 to ensure the shape appears vi-
sually to not have the same ’x’ value.)

Finally, we use the NMinimize function in Mathematica,
which finds constrained global optima, to find a solution
that satisfies all of the equations above. We now have new
positions for each of the shape’s components which satisfy
the constraints in the description. The system will then
display the shape with its new positions to the developer for
her to label as either a positive or negative example.

The NMinimize function works faster with fewer variables.
To speed up the NMinimize function we remove as many
variables as possible. We first remove unreferenced vari-
ables. For example: if the equalArea or larger constraint
is not used, the height, width, and area variables are not
necessary. We then remove any aliased variables. For ex-
ample, it is often the case that two variables are defined to
be equivalent, such as in the case of the p1.y and p2.y being
equal in a horizontal line. In this case we remove one of the
variables by replacing all of the occurrences by the others.

The NMinimize function has several optimization meth-
ods that may be used to solve the equation to minimize.
The method that works in the largest amount of cases is
the Random Search method. This method is also the slow-
est. However, the other methods require initial values of the
points with all of the constraints solved; without these, the
system often does not solve the equation to be minimized.
To fix this, we move most of the constraints into the mini-
mization part of the equation, making finding initial points
which solve the constraints a much simpler problem.4 To
ensure that the constraints in the minimization problem are
given higher priority we modify our minimization function
just as we would a utility function. We give those required
constraints a weight of 1000 and optimal constraints a weight
of 1, ensuring that the system first tries to solve the neces-
sary constraints before solving the unnecessary ones.5

Sometimes Mathematica either reports ‘Failed’ or reports
an extremely high error when trying to solve the constraints.
This can occur either because the constraints listed combine
to form an impossible shape or because the list of constraints
was too complicated for mathematica to solve. Because we
can not tell the difference between these two causes, we skip
shape generation for this description and move on to the
next near-miss example.

6. SUMMARY
The debugging process is an attempt to create a correct

structural description of a shape. We start with a positive
hand drawn example. Then either we generate or have a
developer enter an initial description of the shape. If neces-
sary, the initial description is modified to make sure it does
recognize the hand drawn example. We then test if the de-
scription is over-constrained, by making the constraints neg-
ative one by one and generating a near-miss shape that tests
the suspected superfluous constraint. Similarly, we then test

4A constraint equation A == B can be translated into a
minimization problem by translating it to (A−B)2.
5For example a minimization function of 1000(A − B)2 +
(C −D)2 places much more effort on making A == B than
on making C == D.

if the constraint is under-constrained, by adding a possibly
missing constraint in its negative form one-by one and gen-
erating a near-miss shape that tests the suspected missing
constraint. Throughout this process the developer is being
shown these generated shapes and being asked if the exam-
ple is a positive or negative example. After each response,
the description is modified, either with constraints being re-
moved after a positive example was produced, or with con-
straints being added (or kept) after a negative example was
produced. At the end of this process we have a correct shape
description that contains no unnecessary constraints and is
not missing any required constraints.

7. RELATED WORK

7.1 Multi-Domain Recognition System Debug-
ging

Long [7] has created a multi-domain recognition system
in which the developer can specify the shapes to be recog-
nized in a domain by drawing them. The system helps the
developer debug shapes by letting her know which shapes
are similar and may be confused with others, causing recog-
nition problems. This work is solving a different problem,
focusing on ambiguity in the graphical vocabulary, suggest-
ing that certain shapes be drawn differently, as opposed to
our system which assumes each shape is drawn as the user
intended and attempts to learn what this intention is. [3]
has created a multi-domain recognition system, but has no
methods for debugging the shapes specified within them.

7.2 Learning from Near-Miss Examples
Winston developed a method for learning structural de-

scriptions from examples [10]. He argues that the ideal train-
ing sequence is one where each example is a near-miss. His
work supposes that a human teacher supplies the system
with appropriate near-misses. However, as mentioned ear-
lier, we have found users to be unable to produce a sufficient
range of near-miss shapes that would make evident missing
or superfluous constraints. As suggested above, this is a
generic phenomenon: whether debugging code or geometric
descriptions, good test cases are difficult to generate. To
overcome this problem we have the system itself provide the
examples that help refine its model. Our work applies this
framework to the field of sketch recognition, and we can then
recognize shapes based on the learned structural description.

8. LIMITATIONS AND FUTURE WORK
Our method is limited to describing shapes using con-

straints in our language (LADDER). Although the system
can negate constraints to generate near-misses, it does not
generate disjunctive or negation constraints. We are in the
process of looking at the data from 45 users who have been
asked to describe shapes both in the language and in natural
text to determine what constraints are commonly forgotten.
We hope we can use this information to greatly reduce the
number of missing constraints for which to test, enabling
us to include missing negation constraints and disjunctive
constraints of a limited order.

We have so far tested our technique on shapes composed
solely of lines and circles. We plan to add curves and arcs
in the near future. At this point we are uncertain of the
difficulties that incorporating arcs and curves might cause.

9. CONCLUSION



Sketch interfaces can be generated automatically from
shape descriptions, greatly reducing the amount of time nec-
essary to create a sketch based UI. However, creating correct
shape descriptions is difficult. To address this problem, we
have created a graphical debugging tool for interface devel-
opers that corrects over- and under-constrained shape de-
scriptions. The tool learns structural descriptions through
active learning by presenting the user automatically gener-
ated suspected near-miss examples to refine the description.
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APPENDIX

A. CONSTRAINT VOCABULARY
This section lists the constraints available to describe shape

structure. In our approach, signal error in a hand-drawn shape
should be handled by the shape recognizer. We accomplish this
by giving each constraint its own error tolerance. Because the
error tolerances are constraint specific, we have chosen to include
constraints which are otherwise redundant. For instance, we in-
cluded equalLength line1 line2 so we could specify an appro-
priate error tolerance rather than just using equal line1.length
line2.length.

A.1 Orientation Dependent Constraints
The orientation dependent constraints include horizontal,

vertical,negSlope, posSlope, above, leftOf, horizAlign,
vertAlign, pointsDown, pointsLeft, pointsRight, and
pointsUp.

A.2 Orientation Independent Constraints
The orientation independent constraints include: acute,

acuteDir, acuteMeet, bisects, coincident, collinear,
concentric, connects, contains, drawOrder, equalAngle,
equalArea, equalLength, intersects, larger, longer, meets,
near, obtuse, obtuseDir, obtuseMeet, onOneSide,
oppositeSide, parallel, perpendicular, and sameSide.

A.3 Extra Constraints
The vocabulary also includes constraints to enable developers

to describe orientation independent shapes using orientation de-
pendent constraints by adding the constraint isRotatable. The
vocabulary also includes equal,
greaterThan, and greaterThanEqual, allowing the developer to
compare any two numeric properties of a shape (e.g., stating that
the height is greater than the width). or and not constraint
modifiers are also present to allow the developer to describe more
complicated constraints.

A.4 Composite Constraints
The vocabulary also contains a number of constraints that can

be composed from other constraints. We include these constraints
to simplify descriptions and to make them more readable. They
include: smaller, below, rightOf,
aboveLeft, aboveRight, belowLeft, belowRight,
centeredAbove, centeredBelow, centeredLeft,
centeredRight, centeredIn, lessThan, lessThanEqual.

B. HEURISTICS FOR PRUNING CONSTRAINTS
1: Constraints not generated A variety of constraints are kept

off the list, for the reasons indicated:

equal, greaterThan, greaterThanEqual These constraints
compare properties of many different types, so we
don’t have any intuition on how to vary them. (We
generate constraints comparing properties using prop-
erty specific constraints such as equalAngle, equalArea,
equalLength.)

negation constraints Negation constraints are omitted
because they would greatly increase the number of
constraints to test for, as any particular shape has a
far greater number of negative constraints than posi-
tive constraints.

disjunctive constraints Disjunctive constraints are omit-
ted because they would exponentially increase the num-
ber of constraints to test for.

composite constraints Composite constraints represent
consolidations of other constraints. (After the final
description is created, we simplify the description us-
ing composite constraints.)

2: Label: The system first assigns a labeling to the each of the
components in the drawn shape. The system uses a simple
labeling process combining the type of the shape and a
unique number (e.g., line1, line2).

3: List components: The system then creates a list of all of the
components that are accessible within one layer of indirec-
tion (e.g., line1, line1.p1, line1.center, line1.p2, line1.boundingBox,
line1.stroke, line2, etc.) We do this because we want the
system to generate constraints using hierarchical shape prop-
erties. For example, if we want to describe the shape in Fig-
ure 9 (an arrow contained in a box), then the system will
also generate constraints pertaining to the subcomponents
of the arrow (e.g., in Figure 9, the listed constraints include
the fact that the box also contains the arrow’s shaft).

4: Find True Constraints: We then list all of the unary and
relational constraints by testing each of the constraints in
LADDER on all possible combinations of shape compo-
nents in the list produced by step 2.

5: Remove Nonsensical True Constraints: There are a num-
ber of constraints that may be true but that provide no
intrinsic value, such as tautological constraints. These con-
straints are not generated when finding the list of true con-
straints in step 3. Before this stage, virtually all shapes
with three or more lines in them have over 1000 true con-
straints. After this initial processing, most shapes consist-
ing of three lines have around 200 constraints. For example,
after this obvious reduction, an arrow has 216, and a shape
consisting of three vertically aligned equal-length parallel
vertical lines has 187. To give an example of some of the
rules used:

• A shape should not be listed as concentric, coincident,
meeting, connected, or intersecting with itself.

• The center and the two endpoints of a line should not
be listed as collinear.

• Even though the contains constraint examines the
bounding-box of a shape, neither a line nor a point
can contain an item (even a point).

• A shape should not be listed as larger than a point.

• A line should not be listed as larger than another line.
(The constraint longer is to be used instead for lines,
as larger compares the bounding boxes of two shapes
and longer compares the lengths of two lines.)

• A shape and a subpart of this shape should not be
listed as being on the same side of a line.

6: Remove Duplicate Constraints: Several of the constraints
are redundant, or provide no additional information, when
taking into account the other constraints. These constraints
are removed from the list of true constraints. After this re-
duction, an arrow still has 170 constraints, but a shape



consisting of three vertically aligned equal-length parallel
vertical lines has been reduced to 53 true constraints. To
give an example of some of the rules used:

• If a line is listed as vertical, then we remove the con-
straints stating that any of the line’s subparts are
above one another or are horizontally aligned (share
the same x value). Likewise for horizontal.

• If one shape is above another, then we do not list that
subparts of those shapes are above each other (e.g., if
line1 is above line2, we don’t list if line1.p1 is above
line2). Likewise for the following constraints: left of,
horizontally aligned, vertically aligned, on the same
side of a line, or on the opposite side of a line.

• We remove any collinear constraints in which all of the
points are on a single line when taking into account
coincident constraints (e.g., if line1.p1 is coincident
with line2.p2, then we will remove the constraint co-
incident line2.p2 line1.center line1.p2).

7: Remove More General Constraints: When a more spe-
cific constraint is true, we remove the more general one.

• Remove near constraints if points are coincident.

• Remove acute and obtuse constraints if obtuse meets
or acute meets constraints are true.

• Remove constraints that are true because of transitiv-
ity (e.g., if line1 and line2 are equal length, and line2
and line3 are of equal length, then we can remove the
constraint stating that line1 and line3 are of equal
length). This holds for almost all the relational con-
straints, including equal length, longer, larger, paral-
lel, perpendicular, left of, above, same side, coincident

• If coincident, remove similar connected and meets con-
straints.

• If three lines are vertically or horizontally aligned, we
remove any collinear constraints between them.

8: Group Constraints: The remaining constraints are then
grouped into categories that collect constraints that we be-
lieve are interrelated in the sense that testing one often
involves testing the others as well.

• Unary Orientation Constraints: horizontal*, vertical*,
positive slope, negative slope, arc points up, arc points
down, arc points right, arc points left

• Relational Orientation Dependent Constraints: hori-
zontally aligned*, vertically aligned*, left of, above

• Size Constraints: equal length*, longer, larger, equal
area

• Connectedness Constraints: coincident*, bisects*, con-
nected, meets, acute meets (in two groups), obtuse
meets (in two groups), intersects

• Relative Angle Constraints: parallel*, perpendicular,
acute meets, obtuse meets, acute, obtuse, directed
lines acute, directed lines obtuse, equal angle

• Location Constraints: concentric*, collinear*, near,
same side, opposite side, on one side

• Draw Order Constraints: draw order

9: Rank Constraints: The system ranks the constraints.

• Order the constraints according to the order listed
above (e.g., horizontal line constraints are listed be-
fore vertical line constraints).

• With the exception of coincident and collinear con-
straints, move constraints which refer to subparts to
the bottom of the list (keeping their relative constraint
type ordering).

10: Simplify: The system removes certain constraints that are
less important visually, including drawn before and on one
side. The system also remove constraints that refer to
subparts of shapes, with the exception of coincident and
collinear.

11: Select Constraints: We now select a number of initial con-
straints as our first guess. We limit the number of con-
straints to n2, where n is the number of primitive compo-
nents in our drawn example (e.g., an arrow has three lines,
and thus we would choose 9 initial constraints). We use the
following selection rules.

1. We first add the constraints with the stars in each of
the groups listed above.

2. If there are too many constraints, we find the group
with the largest number chosen from it, and remove
the bottom one, continuing until there is an appropri-
ate number of constraints.

3. If there are too few constraints, we pick the group
with the fewest chosen constraints and select the next
constraint on the list. We continue until there is an
appropriate number of constraints.

4. If there are still too few constraints, we add subpart
constraints that were removed during the simplify step
to the groups above (with their original ranking re-
tained). We then continue to add one constraint at a
time using the same rules as stated.
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