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Abstract 
We are interested in enabling a generic sketch recognition 
system that would allow more natural interaction with 
design tools in various domains, such as mechanical 
engineering, military planning, logic design, etc. We would 
like to teach the system the symbols for a particular domain 
by simply drawing an example of each one – as easy as it is 
to teach a person. Studies in cognitive science suggest that, 
when shown a symbol, people attend preferentially to 
certain geometric features. Relying on such biases, we built 
a system capable of learning descriptions of hand-drawn 
symbols from a single example. The generalization power 
is derived from a qualitative vocabulary reflecting human 
perceptual categories and a focus on perceptually relevant 
global properties of the symbol. Our user study shows that 
the system agrees with the subjects’  majority classification 
about as often as any individual subject did. 

1   Introduction   

We are interested in creating a generic sketch 
understanding mechanism that will allow more natural 
interaction with design tools in a variety of domains (e.g., 
mechanical engineering, military planning, logic design, 
etc.). This paper presents a learning system that is part of 
this larger effort. Our goal is to make teaching the system 
new shapes as natural as possible, ideally as easy as it is to 
teach new symbols to another person. Usually it is enough 
for people to see a symbol once to make a reasonable 
decision whether new drawings are instances of it, even 
without knowing its meaning. For example, would you 
recognize Figure 1b as an instance of the symbol in 1a? 
 
 
 

Figure 1. a) Original symbol, b) New drawing. 

For most people the answer is “yes”  because 1b contains 
the same features they paid attention to in 1a. And people 
pay unequal attention to different features, so their 
recognition is undeterred by the differences between 1a 
and 1b. This is the goal of any learning system. Common 
approaches to learning (e.g., neural nets, SVMs) require 
training on numerous examples of a symbol seeking to 
“average out”  the unimportant differences. We sought a 
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representation and a generalization mechanism that would 
reduce the number of required training examples, 
preferably, to as few as one. The difficulty is knowing 
which features people perceive as relevant in that one 
example. Consider the symbol in Figure 2a: 
 
 
 

Figure 2. Symbol from military planning. 

In 2a lines L1, L4 and L5 are the same length. But people 
mostly notice only the equality of L4 and L5. Hence, they 
can accept 2b as the same symbol even though it violates 
the constraint L1=L4. The system’s goal is to do the same. 
We turned to studies of human perception to understand 
what features people find relevant in a geometrical 
configuration, and created heuristics attempting to capture 
these perceptual biases. We used results from Goldmeier’s 
perceptual similarity studies (Goldmeier 1972), Arnheim’s 
book on art and visual perception (Arnheim 1974), and 
grouping principles described by the gestalt psychologists 
(Wertheimer 1923). Using these heuristics we built a system 
capable of learning descriptions of hand-drawn symbols 
from a single example. The description is phrased in terms 
of geometric primitives (lines and ovals) and constraints 
between them (connects, parallel, above, vertical, longer, 
etc.) The generalization power is derived from a 
qualitative vocabulary reflecting human perceptual 
categories and a focus on perceptually relevant global 
properties of the symbol – tension lines (defined below), 
obstruction, and grouping. Note that we focus on 
generalizing over variations that are not due to low-level 
noise and that would occur even with perfect lines, 
rectangles, ovals, and snap-to-grid (as in Figures 1 and 2). 
This alone presents a substantial challenge1. 
The recognition engine that will use our generated 
descriptions is still under development in our group, so we 
could not evaluate the final recognition accuracy. Instead, 
we measured how often our system agreed with people’s 
perceptual judgments on near-perfect drawings. We asked 
several people to decide whether a given variation should 
be recognized as an instance of a new unfamiliar symbol 
and checked whether the description produced by the 
system would cause the same classification. On the whole 
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data set, the system agreed with the majority vote 77% of 
the time. In comparison, a subject chosen randomly would 
agree with the majority 82% of the time. For cases with 
strong majority (>80% of the people voted the same) the 
system achieved 83% agreement (and a random person 
would get 91%). Section 4 describes the study in detail. 
Because of several limitations (section 5) our system can’ t 
yet describe the full range of symbols in the domains of 
interest. We believe our preliminary results still show that 
using a representation and feature ranking built on 
knowledge about human perception adds considerable 
generalization power, allowing learning from one example. 

2   Related Work  

Of the large body of work supporting free-hand sketching, 
most relevant to this paper are systems attempting to 
recognize (i.e. give a categorical label to) the input. We 
are interested in two aspects of these systems: the 
representation and the learning mechanism. The choice of 
representation affects the descriptive power and the initial 
level of generalization. For learning, if the recognizers are 
trained (rather than created by hand), it is interesting to 
see what generalization techniques allow some systems to 
use fewer examples than others.  
Some systems, like GRANDMA (Rubine 1991) or CALI 
(Fonseca, Pimentel, and Jorge 2002) use a set of global 
aggregate features (sum of angles, or properties of the 
bounding box, convex hull, etc.) to represent single-stroke 
gestures or simple shapes, and require over 50 training 
examples. Using only global features, like the ones in 
these systems, is not sufficient for capturing the detail of 
more complex symbols that we are interested in (e.g., 
Figure 1). Instead we needed to make explicit the 
properties of the individual parts of the symbol. 
In several systems, the representation combines primitive 
shapes and higher level qualitative spatial relationships 
between them, similar to the ones in our system (Landay 
and Meyers 2001), (Gross and Do 2000), (Shilman et al. 
2002). However, even if the low level shape recognizers 
can be trained, there is no mechanism for automatically 
learning which of the higher level relationships are 
important. They have to be picked out by the user from a 
fairly large list recorded by the system. In contrast, we 
focus on identifying the relevant subset automatically. 
GeoRep (Feguson and Forbus 1999) produces descriptions 
of perfect line drawings in terms of geometric primitives 
and qualitative spatial relations between them. To 
generalize, it records only constraints between proximal 
elements, assuming only those constraints are visually 
important. Similarly, our system prefers local interactions. 
However, we found that interaction may be relevant even 
if two primitives are far away, as long as they are not 
separated visually by other primitives. We also take into 
account global alignments and grouping. We show that 
these are important to better capture perceptual relevancy. 
(Calhoun et al. 2002) presents a system that is most 
similar to ours. It uses a semantic network to represent 

primitives (lines and arcs) and constraints between them 
(parallelism; angle between primitives, and intersections 
with their relative location). The system needs only a few 
examples to train each recognizer. The training filters out 
the relationships and properties appearing with low 
frequency. Different weights are assigned to different 
kinds of errors for recognition matching, reflecting 
different perceptual importance. These weights play the 
same role as the default relevance scores in our system. 
Yet our system has mechanisms to further adjust these 
scores, because we observed that the same type of 
constraint may have different perceptual importance 
depending on the global configuration of primitives. 
In summary, similar to ours, several previous systems 
have used qualitative constraints for initial generalization. 
Our contribution is in ranking them and guiding further 
generalization by including heuristics about perception of 
the overall configuration of primitives in a symbol. 

3   Approach  

Our goal is to produce a symbolic description of a drawn 
symbol adequate for recognition, i.e. capturing just the 
relevant features. The input to the system is the user’s 
strokes, segmented into simple geometric primitives (lines 
or ovals) (Sezgin, Stahovich, and Davis 2001).  The 
output description includes these primitives and a set of 
geometric constraints between them. This section shows 
how the vocabulary of these constraints was determined 
and how the system decides which of all the constraints to 
keep. We also illustrate its operation on the symbol below: 
 
 
 
 
 
 

Figure 3. Symbol from military planning. 

For this illustrative example, the system has previously 
learned the descriptions of the cross (L8, L9) and the 
rectangle (L1-L4), so it can identify them in the drawing. 

3. 1   Qualitative Vocabulary 
We have gained many insights from Goldmeier’s work on 
perceived similarity of shapes (Goldmeier 1972), which 
shows how people are strongly biased to notice certain 
geometric properties and ignore others. Goldmeier 
identifies the relevant and irrelevant features by exploring 
their effect on perceived similarity. Figure 4 illustrates a 
typical experiment. Consider the shape in Figure 4a and 
ask yourself which of 4b and 4c is more similar to 4a. 
 
 
 
 
 

Figure 4. Which of b and c is more similar to a? 
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The majority of subjects chose c. Note that the left side of 
b is exactly the same as a. Even though in c all the lengths 
and angles are slightly changed, it is considered more 
similar because of preserved symmetry. 
Goldmeier found that people attend to properties he calls 
singularities, i.e. special cases in the space of geometric 
configurations in the sense that small variations in them 
make a qualitative difference. One example is verticality: 
a vertical line rotated a little is no longer vertical. 
Symmetry is another example1. Goldmeier also showed 
that people are much less sensitive to variations in 
nonsingular properties, perceiving them as essentially the 
same state (Goldmeier 1982, p. 44). Thus we can reduce 
the description vocabulary to a few qualitative states that 
represent singularities and lump non-singular values 
together. For example, it is enough to describe a line as 
horizontal, vertical, or positively or negatively sloped. 
Goldmeier’s work mentions some singularities explicitly, 
like symmetry, parallelism, horizontality, verticality, and 
straightness. We have picked the rest of the vocabulary 
terms using our own introspection and relying on 
Goldmeier’s definition of singularities as the “more 
regular, better, more unique”  (Goldmeier 1982, p. 44), 
and as properties a change in which significantly alters the 
perception of the symbol. The table on the right lists the 
constraints we use.  
In an input symbol we find all constraints expressible in 
this vocabulary, allowing for a small level of noise (like 
almost vertical or almost connected). For Figure 3, for 
example, the system identifies 92 constraints (in addition 
to those in the previously learned cross and rectangle). 
Sample constraints include: connects (L5 L6), parallel (L6 
L8), vertical (L5), and above-centered (L3 L5). 

3.2   Default Relevance Ranking 
A second set of Goldmeier’s experiments demonstrates 
that singular properties can have different perceptual 
importance, as illustrated below. In both figures, subjects 
were again asked which of b and c is more similar to a. 

 
 
 
 
 

Figure 5. Which of b and c is more similar to a? 

 
 
 

Figure 6. Which of b and c is more similar to a? 

In Figure 5, the majority of subjects chose c, while in 
Figure 6 the choice was b, even though the shapes in 
Figure 6 are simply rotated versions of Figure 5. In both 
cases, the viewers preferred the vertical axis of symmetry. 
                                                
1 We do not yet handle symmetry (or any n-ary constraints), but we use the 
example because it illustrates the larger point so simply and convincingly. 

Goldmeier presents several similar experiments. However, 
they are not sufficient, for ranking all the constraints in 
our system. As a result, we had to use our own 
introspective analysis to find the relative perceptual 
importance of different constraints. We examined 
common symbols in several domains (military planning, 
mechanical engineering, etc.) and determined which 
symbol properties allowed the most variation without a 
large perceptual change to the symbol. The table below 
shows supported constraints in order of decreasing 
relevance, with singular constraints shown in bold.  

Constraints Score 
Connects (for line endpoints) 1.0 
Meets (i.e. T-intersection), intersects, tangent. 
Inside, inside-centered 

0.95 

Touches, overlaps (for ovals) 0.9 
Horizontal, vertical (for lines) 0.8 
Pos- and neg-slope; above, below, right, left, upper-
right, upper-left, lower-right, lower-left; above-, and 
right-centered; parallel, perpendicular 

0.7 

Horizontal, vertical (for ovals); elongated, non-
elongated; same-length, same-size 

0.6 

longer, larger 0.55 

The scores reflect the default relative relevance, and were 
chosen to be spread in the upper half of the [0;1] interval. 
They are adjusted by the mechanisms described below. 

3.3   Adjusting Relevance Scores 
Goldmeier argues that the saliency of a given property 
depends on the overall configuration of the primitives in a 
shape. Observations we made in the course of this work 
helped us create heuristics for adjusting default relevance 
scores based on three global properties: obstruction, 
tension lines, and grouping. We describe these heuristics 
in the order that they are applied by the system.  

Obstruction.  In symbols with many parts attention seems 
to be focused on local interactions. Consider Figure 7a. 
 
 
 
 
 
 

Figure 7. b and c are parts of the pattern in a. 

Figures 7b and 7c are parts of the pattern in 7a, yet the 
obvious parallelism of the lines in b is not noticeable when 
looking at a. The lines isolated in c, however, are more 
obviously parallel even in the original context in a. It is 
easier to pay attention to the local interaction of the lines 
in 2b because there are no other lines separating them. We 
try to approximate this effect by the notion of obstruction, 
which is measured by the number of geometric primitives 
between a given pair: O(p1, p2). The system decreases the 
relevance of relative orientation, length, position, and size 
constraints by 0.15*O(p1, p2)*r, where r is the current 
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relevance score1. For Figure 3, for example, this heuristic 
causes a large decrease of the relevance for the constraints 
like “parallel (L8 L6)”  and “ longer (L9 L5),”  ensuring the 
system would accept the variation in Figure 12a. 

Tension Lines. Arnheim argues in his work that people 
attend to regular alignments of geometric primitives, 
particularly horizontal and vertical alignments (Arnheim 
1974). In Figure 8a the circle is perceived to be “out of 
balance,”  while placing it on one of the dashed lines in 8b 
would create a more “stable”  configuration: 
 
 
 
 

Figure 8. Regular alignments. 

The alignments of corners of the square and the centers of 
its sides form a kind of perceptual grid that other elements 
are “pulled”  toward. In our system, we call these 
alignments tension lines, defined in terms of alignments of 
line endpoints and midpoints. The system identifies a 
tension line wherever at least two such line points align 
horizontally or vertically (we do not yet support diagonal 
alignments). The system increases by 0.5*(1 – r) the 
current relevance r of relative length, position, and 
orientation constraints that would break the tension lines 
if violated. For example, the relevance of the relative 
vertical positions of the lines L8, L9, L3 and L5 in Figure 
3 is increased because their midpoints lie on a vertical 
tension line. This ensures that the example in Figure 12c 
would be rejected. 
Note that this heuristic boosts some constraints that make 
parts of the symbol horizontally or vertically symmetrical, 
thus implicitly helping enforce some symmetry constraints. 

Grouping. Finally, we also use observations of perceptual 
bias from the Gestalt psychologists, who noted that people 
tend to combine individual elements into a greater whole, 
grouping them by proximity, similarity, etc. (Wertheimer 
1923). For example, Figure 9a is perceived as two rows of 
circles, rather than six individual circles. Properties of a 
row as a whole are perceptually more important than 
properties of its components. People do not tend to notice 
the vertical alignment of the circles in from each of the 
rows the way we do in Figure 9b. 
 
 
 
 
 

Figure 9. Perceptual grouping. 

The current implementation supports only two grouping 
principles: connectedness, determined by segmenting the 
symbol into connected components, and familiarity of 
shape, determined by looking for previously learned 
                                                
1 The constants used in this and other formulas were determined empirically 
by examining resulting descriptions for symbols in various domains. 

symbols as subparts of the new drawing. Figure 10 gives 
the group hierarchy for the symbol in Figure 3. 
 
 
 
 
 
 

Figure 10. Group hierarchy of the symbol. 

The system decreases the relevance r of relative 
orientation, length, position, and size constraints between 
primitives that belong to different groups by subtracting 
0.4*r. For example, it decreased the relevance of “same-
length: (L6 L1) (L7 L4),”  hence the variation in Figure 
12b would be accepted according to the description. 
After all the scores have been adjusted, only constraints 
ranking above 0.5 are included in the final description. 
For the example symbol, from 92 constraints initially 
found by the system only 34 remain in the description. 
Note that the description in Figure 11 refers to the 
previously learned descriptions for the cross and the 
rectangle, which are shown in the box. 

GROUP HIERARCHY: 
Group g1 connected-component: L1-L9 
    Group g2 object - cross: L9 L8 
    Group g3 object - rectangle:  L1-L4 
    Group g4: L5 L6 L7 

CONSTRAINTS 
vertical: (L5) 
neg-slope: (L7) (L6) 
connects: (L5 L6) (L5 L7) (L4 
L7) (L3 L6) (L7 L2) (L6 L1) 
meets: (L9 L3) (L8 L3) 
above-centered: (L5 L2)  
(L3 L5) (L9 L2) (L9 L3) (L9 
L5) (L8 L2) (L8 L3) (L8 L5) 
right-centered: (L5 L1)(L4 L5) 
right: (L5 L6) (L7 L5) 
upper-right: (L4 L7) (L3 L6) 
(L7 L2) (L6 L1) 
parallel: (L7 L6) 
longer: (L3 L6) (L3 L8) (L3 
L9) (L2 L7) (L7 L5) (L6 L5) 

 CROSS: 
intersects: (L8 L9) 
pos-slope: (L9) 
neg-slope: (L8) 
same-length: (L8 L9) 
 
RECTANGLE: 
horizontal: (L3) (L2) 
vertical: (L1) (L4) 
above-centered: (L3 L2) 
right-centered: (L4 L1) 
upper-left: (L1 L2) (L3 L4) 
upper-right: (L3 L1)(L4 L2) 
same-length:(L3 L2) (L4 L1) 
longer: (L2 L4) (L2 L1) (L3 
L4) (L3 L1) 

Figure 11. Final description for the symbol in Figure 3. 

Figures 12 shows the variations that would be accepted 
and rejected respectively, according to this description: 

 
 
 
 
 
 

Figure 12. a), b) Variations that fit the system’s description. 
c), d) Variations that contradict the description. 
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4 User Study and Evaluation 

The ideal evaluation of the system would be to use the 
produced descriptions in a sketch recognition engine and 
test the recognition accuracy. However, the recognition 
engine in our group is still under development. As an 
alternative, we tested whether the system’s descriptions 
would produce the same classifications of shapes as people 
would. 
In our study 33 subjects were shown 9 unfamiliar symbols 
and 20 variations of each symbol. The variations were 
constructed using the system’s descriptions produced for 
the 9 symbols by randomly picking a property from the 
description and varying it randomly to a large or a small 
degree. Half of the 20 variations were chosen to agree with 
the description and half contradicted it. This means that 
the description would cause a recognition engine to 
recognize half of these variations as the learned symbol. 
The subjects had to choose whether each variation should 
be recognized as the original symbol, even though on 
many examples the choice was somewhat difficult (e.g. 
like it would be for variations in Figure 12 on the original 
symbol in Figure 3). We forced a binary choice since 
ultimately this is the task that the system will have to face. 
Before voting on each variation, the subjects could look at 
the original symbol as long as they liked. 
Given that our system relies only on geometric 
information, to ensure parity, we selected symbols from 
military planning, a domain most likely unfamiliar to the 
subjects and in which the symbols have little resemblance 
to the physical objects they stand for, preventing test 
subjects from relying on knowledge about the things 
represented (Figure 13). 

 
Figure 13. Symbols used for evaluation. 

For each variation, we recorded the majority answer and 
the percentage of people who gave that answer (majority 
percentage). For almost 40% of the variations the subjects 
had high agreement – the majority percentage was above 
90%. On more than half of data set the majority 
percentage was higher than 80%. For cases with highly 
divided opinions, it makes less sense to evaluate the 
performance of the system (i.e., level of agreement with 
people) since people did not agree with each other. Hence, 
we report the results for both the complete data set and for 
the variations with high agreement (i.e., with majority >= 
80% and majority >= 90%). 
Chart 1 shows the evaluation results. We measured the 
proportion of times that the system agreed with the 
majority answer, reported for different data subsets. For 
example, for the subset of the variations where the 

majority percentage exceeded 80%, the system agreed with 
the majority vote 83% of the time. Note that the baseline 
performance is 50%: the system would agree with people 
half of the time if it guessed randomly. 
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Chart 1. Evaluation results. 

The “Target”  marker shows the level of agreement that a 
person randomly selected from the subjects would achieve. 
Since we have focused on replicating people’s perceptual 
biases, we should not expect the system to do better than 
this. The results show that system captured enough 
information about the symbol to perform significantly 
above chance level and to approach close to the target. 
It is interesting to look at the disagreements. Most of the 
system’s errors were false negatives, i.e. the system 
rejected a variation that most people would still recognize 
as the symbol. The issue was that people seemed to pay 
less attention to individual detail (aspect ratio, precise 
position, etc.) of the composing shapes in the symbol than 
the system biases accounted for. 

  Original symbol:  Variation: 

         

Figure 14. Example of a false negative error. 

Most false positives stemmed from the lack of global 
symmetry detection and a lack of apparently perceptually 
relevant “must not”  constraints for properties like 
touching, connection, or intersection. 

  Original symbol:  Variation: 

     
Figure 15. Example of a false positive error. 

5 Limitations and Future Work 

There are several limitations in the current system. The 
system currently supports only symbols composed of lines 
and ovals, and should eventually incorporate arcs and 
curves. This will require exploring what properties are 
perceptually salient for arcs and curves. 
Our qualitative vocabulary lumps non-singular property 
values into one term and does not capture extreme 

Majority vote: yes 89% 
System: no 

Majority vote: no 72% 
System: yes 



degrees. For both a and b in Figure 16, for example, the 
system would describe the relative size of the circles as 
“ larger o1 o2,”  making the descriptions identical. But 
these symbols appear quite different to human observers. 
 
 
 
 
 

Figure 16. Perceptually different symbols. 

As noted, the system doesn’ t handle “must not”  
constraints. Perhaps a possible solution is to treat the 
absence of the most perceptually relevant constraints 
(connects, touches, meets, etc.) in the description as 
required must-not’s. 
The system uses only pairwise constraints. We need to 
include support for constraints that involve several 
primitives, like symmetry, interval equality, or alignment 
of multiple elements. Without them it is impossible to 
represent configurations like the one in Figure 17. 
 
 
 
 

Figure 17. Symbol requiring alignment and interval equality. 

The system records a fixed set of geometric primitives, so 
it is bound to overconstrain symbols that can have an 
arbitrary number of some elements: 
 
 
 
 

Figure 18. Symbols with an arbitrary number of primitives. 

Learning such configurations presents two challenges. The 
system has to be able to, first, identify a group of repeated 
components and, second, decide whether an arbitrary 
number of them was intended. Goldmeier’s studies 
provide some hints on how this may be done. He has 
shown that when the repeated elements are small 
compared to the size of the symbol and there is a large 
number of them, people start perceiving them as material 
rather than form and become insensitive to the variation in 
number of such components. The difficult task is defining 
quantitatively the terms “small relative to the symbol size”  
and “ large number of elements” . 
While these limitations show that the system is 
incomplete, the general approach of relying on perceptual 
biases seems sound, as it suggests potential solutions to 
some of the limitations. 

6   Contributions 

We have presented a system for learning shape 
descriptions. It guides the generalization from a single 
example using built-in knowledge of observations about 
human perception. The main sources of the generalization 

power are a qualitative vocabulary reflecting perceptual 
singularities, different relevance scores for different 
constraints, and score adjustment heuristics based on 
perceptually relevant global properties of the symbol. 
Our initial implementation shows that it is possible to 
produce descriptions of structurally complex symbols from 
a single example. Our user study has shown that the 
system agreed with the majority perceptual judgment 
almost as well as a randomly chosen person would.  
Future work on the system includes improving its 
descriptive ability by adding support for curves and parts 
with an arbitrary number of elements and by extending the 
vocabulary to support higher-level constraints like 
symmetry, interval equality, and multiple alignments. We 
believe that further exploration of perceptual biases may 
provide clues on how to achieve these extensions. 
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