
Recognition efficiency issues for freehand sketches

Tevfik Metin Sezgin MTSEZGIN@AI .MIT.EDU

MIT Artificial Intelligence Laboratory, 200 Technology Square, Cambridge MA, 02139 USA

1. Introduction

Sketch understanding has received attention as an en-
abling technology for natural human-computer interaction
(Thomas Stahovich & Randall Davis, 2002). With the
widespread availability of pen based PDAs, and more re-
cently with the emergence of Tablet PCs, there is an in-
creasing interest in sketch recognition. Current approaches
to sketch recognition treat sketches as static images and
apply structural or syntactic recognition techniques com-
monly used in computer vision. In this paper, we character-
ize sketching as an interactive, incremental process, and ar-
gue that sketch recognition algorithms should be tailored to
take advantage of these properties of sketches that separate
them from images. We report experimental results showing
how the order in which strokes are drawn affects the recog-
nition speed and propose possible approaches for achieving
algorithms with better memory and speed requirements.

2. The problem

One property of sketches that is not exploited as much is
that they are created in an incremental fashion. On the other
hand, most existing sketch recognition algorithms are vari-
ants of computer vision algorithms, designed to deal with
the free-hand and articulated nature of sketches despite the
fact that computer vision algorithms have been developed
to deal with static pictures. Starting with a blank sheet of
paper to the end of the sketching process, the sketching
surface sees a number of plausible scenes formed of com-
pleted objects even if the scene is not semantically mean-
ingful. In many circumstances, the recognition system may
be required to recognize such valid completed objects in
the scene even if the sketch is not completed. One obvious
scenario where object recognition is needed as the sketch is
being constructed is when the designer of the sketch based
interface wants the system to show its understanding by
displaying iconic descriptions or neatened versions of the
objects that it recognizes1. Another instance where it is
required to recognize objects before a sketch is completed
occurs in the case of editing. For example, in the domain of

1Whether or not this is appropriate for all domains or tasks is
itself an interesting research question.

digital logic circuit sketches, if the user is sketching an RS
flip-flop circuit composed of twoNAND gates and wires,
the editing behavior of the sketching interface may depend
on its operand (e.g., when the eraser part of the stylus is
used on wires, it deletes parts that it touches; when used on
the gates it deletes the whole all at once). Because, widely
used computer vision algorithms such as interpretation tree
search and subgraph isomorphism perform were not devel-
oped with this “recognize as we go” requirement in mind,
they either result in poor performance or are simply not ap-
plicable.

Model based object recognition methods in the literature
perform a search either in the correspondence space, the
transformation space or use a combination of two. Be-
cause sketches have a high degree of variability (e.g., non-
affine scaling properties), transformation space search be-
comes inappropriate for recognition, thus we focused on
correspondence space methods which try to find correspon-
dences between image features and model features sub-
ject to some constraints. In the next section, we will de-
scribe how a popular correspondece space search algorithm
– namely a variant of the interpretation tree (IT) algorithm
– performs for continuous sketch recognition.

3. Continuous sketch recognition with the IT
algotithm

The details of how the IT algorithm works is described in
(Grimson, 1989). In our experimentes, we used a variant
of the IT algorithm modified for continuous sketch recog-
nition. The basic idea is to instantiate plausable partial in-
terpretations of a given scene. The list of plausable partial
interpretations is extended as new strokes are drawn. After
each stroke is drawn, it is classified as a geometric primitive
(line, polyline, oval, curves) using the early sketch process-
ing toolkit described in (Tevfik Metin Sezgin, 2001). Par-
tial interpretations are created and updated as follows. For
each type object to be recognized,

• If there are no partial interpretations of the given type,
and if the geometric primitive derived from the lat-



est stroke fits into a slot2 without violating any con-
straints, create a new partial template with that partic-
ular slot assigned to the primitive.

• If there are existing partial interpretations which can
be extended with the latest primitive without violating
any constraints, these interpretations are cloned and
extended.

Figure 1.Number of partial interpretations generated during
recognition of stickfigures drawn with different stroke orderings,
sorted in ascending order. The y-axis shows the cost.

4. Experiments

In order to test how the simple recognition strategy de-
scribed above performs for continuous sketch recognition,
we implemented a stickfigure recognizer. Because sketches
are created incrementaly and the drawing order for parts of
a stickfigure can change, we tested how many partial inter-
pretations we get for different drawing orders. We recorded
raw strokes for a stickfigure and added the strokes to the
sketching surface in different drawing orders to simulate
different ways in which an object can be drawn. To mea-
sure the cost of recognition for a particular ordering, we
used the number of partial interpretations that were instan-
tiated at the completion of the sketch. Fig. 1 shows the
costs for different orders sorted in an ascending order.

2By a slot, we refer to a component of a particular object
model. For example, a plus sign has two slots which refer to
the intersecting horizontal and vertical lines. This is referred to
as object feature in the computer vision literature.

5. Results and future work

As seen in the figure, costs for different orders range from
24 to 121. The reason for this difference is that depending
on how an object is drawn, the combinatoric explosion in
the number of interpretations will vary. In other words, the
branching factor of the corresponding IT will be different
for different drawing orders. An example illustrates why
this happes: For a stick figure, if we start with two touch-
ing lines, they could potentially be a pairs of arms, legs, or
the body along with any of the other limbs. On the other
hand, if we have an oval touching a line, these strokes can
only be the head and the body. So, in one case there are
multiple ways in which two strokes can be labeled and in
the other case the labeling is unique. In the computer vision
literature, these kinds of combinatorial explosion in search
is controlled by actively searching highly constraining fea-
ture sets to initiate the recognition (the concept ofkey oran-
chor components). However, in continuous sketch recogni-
tion, there is no guarantee that the key components will be
sketched first. We believe that a more appropriate recogni-
tion strategy would be to delay the labeling of strokes until
thekey components of a particular object are drawn. This is
indeed a hard problem because it requires knowing the cur-
rent state of a drawing. In this case, determining the exact
state would be as costly as enumerating all plausable inter-
pretations so we propose to use anestimate of the state. The
idea is to use an estimate of the current state along with the
knowledge of the search space (learned offline from object
descriptions) to guide the search to minimize combinatoric
explosion. This approach is closely realted to decision the-
oretic and non-myopic approaches to search, and literature
on (PO)MDPs and planning. We are currently investigat-
ing this proposed framework as a more CPU and memory
efficient approach to sketch recognition.

Acknowledgements

I would like to thank my thesis advisor Prof. Randall Davis
for his supervision.

References

Grimson, W. E. L. (1989). The combinatorics of heuristic
search termination.AI Lab Memo 1111.

Tevfik Metin Sezgin, Thomas Stahovich, R. D. (2001).
Sketch based interfaces:early processing for sketch un-
derstanding.Proceedings of PUI-2001, November 2001.

Thomas Stahovich, J. L., & Randall Davis, C. (2002). A
framework for multi-domain sketch recognition.AAAI
Spring Symposium: Sketch Understanding March 25-27,
Stanford CA.


