
Handling Overtraced Strokes in Hand-Drawn Sketches

Tevfik Metin Sezgin and Randall Davis
MIT Computer Science and Artificial Intelligence Laboratory

The Stata Center 235
Cambridge MA, 02139

{mtsezgin,davis}@csail.mit.edu

Abstract

Overtracing is the phenomenon in sketching of repeat-
edly drawing over previously drawn ink. It is a natu-
rally appearing effect and is especially frequent in do-
mains such as architectural drawings. Existing work
in sketch recognition focuses on sketches with non-
overtraced strokes. In this paper, we describe a method
for generating geometric approximations of overtraced
strokes in terms of primitives including lines, non-self-
intersecting polylines, ellipses and arcs. Our system
generates concise approximations for overtraced strokes
at an early stage in sketch processing, making it possi-
ble to use these concise descriptions in higher level pro-
cessing and sketch interpretation systems.

Introduction

Freehand sketches are inherently informal and messy. Un-
like clean, computer generated diagrams, manifestations
of abstract shapes are imprecise and highly variable in
sketches. One of the challenges in sketch recognition is the
ability to support this imprecision and high variability, of
which overtracing is an example (Fig. 1).

In a paper studying how architects sketch, Do and Gross
describe overtracing as one of the drawing techniques heav-
ily used in practice. They list the functions of overtracingas
“selecting or drawing attention to an element; shape emer-
gence, attending to one or another shape interpretation; and
shape refinement or adding detail to an abstract or roughed
out shape”. We want to make it possible for users to em-
ploy this heavily used drawing technique in sketch-based in-
terfaces. We do this by generating geometric descriptions
of overtraced strokes in terms of common geometric primi-
tives.

Our strategy for handling overtracing is to deal with it
early in the recognition process – in the context of model
based recognition – before high level interpretations are
built. We focus here on generating geometric approxi-
mations for single stroke shapes that are overtraced (e.g.,
Fig. 1). We attempt to solve the problem at the geometric
level by fitting geometric primitives to input strokes.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Example of an overtraced stroke.

Shape approximation
We generate fits for lines, arcs and circles by computing
model parameters1 that minimize the least squares fitting er-
ror. Polylines usually require a feature point detection step,
which is complicated by the overtraced nature of the strokes.

Line approximation

We generate line approximations by finding a total least
squares fit to the data, i.e., assuming noise in both coordi-
nates(x, y) of the data. Simpler regression techniques as-
sume the noise is in only they component and measure only
the vertical distance to the fitted line result in unreliablefits
especially with lines near vertical, where a small error in the
x coordinate causes a large change in the error contributed
by that point.

We compute the equation of the total least squares line
fit in the form of ax + by + c = 0 by computing the first
eigenvectorv of the covariance matrix of the(x, y) posi-
tions. Then the parameters of the line area = v1, b = v2

andc = −ax̄ − bȳ.

Generating arc and circle approximations

We have previously shown how an arc approximation can be
obtained by fitting a circular arc to overtraced strokes (Sez-
gin & Davis 2004a). This is done by writing the equation
for a circle as(xi − cx)2 + (yi − cy)2 = r2 where(cx, cy)
is the center of the circular arc andr is the radius of the arc.
Then we find the least squares solution for:

1E.g., slope and position for lines; center, radius and extent for
arcs.

nira
Text Box
Appeared in AAAI 2004 Symposium on Making Pen-Based Interaction Intelligent and Natural, 2004. pp.141-144.













2x1 2y1 1
2x2 2y2 1
. . .
. . .

2xn 2yn 1











[

cx

cy

r′

]

=











x1
2 + y1

2

x2
2 + y2

2

.

.

xn
2 + yn

2











Herer′
2

= r2 − cx
2 − cy

2. Finally we calculate the start-
ing angle and the extent for the arc. If the extent of the arc
computed by accumulating direction changes exceeds2π,
we have a full circle instead of an arc.

Ellipse approximation
Among many methods for elliptical approximation of data
(Bookstein 1979; Fitzgibbonet al. 1999; Faber & Fisher
September 2001), we found the direct ellipse fitting method
proposed by (Fitzgibbonet al. 1999) to be the most appro-
priate, because it specifically attempts to fit an ellipse (asop-
posed to a generic conic section) to the data. It is also robust
enough for generating fits for point clouds. Their method
solves for the parameters of the generalized conic equation
ax2 + bxy + cy2 +dx+ey +f = 0 subject to the constraint
4ac − b2 = 1 that results in an elliptical fit.

Alternatively, a simpler method that computes the param-
eters of an ellipse fit based on the rectangular bounding box
of the stroke can be used if the ellipses are known to be full.

Approximation of polylines
Existing work on polyline approximation uses speed and
curvature data as two sources of information to detect fea-
ture points,2 and relies on the data points to be sorted
along the path of the stroke (Sezginet al. November 2001;
Calhounet al. 2002; Bentsson & Eklundh 1992; Rattarangsi
& Chin 1992). In non-overtraced strokes, the time at which
points are sampled is implicitly assumed to give this order-
ing. Clearly, with overtraced strokes the timing information
cannot be used to order the points spatially, as points far
away temporally may end up close spatially.

Another challenge in dealing with overtraced polylines is
that due to the messy nature of sketching, ink in the over-
traced parts of a stroke does not necessarily lie all on the
same line.

Feature point detection
We present a two step approach to feature point detection. In
the first step, we treat the input stroke as a collection of un-
ordered points and apply a point cloud thinning approach
based on moving least squares method (Lee 2000) along
with the random sample consensus algorithm to move points
closer along a path perpendicular to the stroke. This gives
us a thinned version of the stroke. Next, we sort the points
along the stroke by an edge linking step that combines all the
points on a single path. Conventional feature point detection
methods can be applied from that point on. We begin with
the stroke thinning and point sorting processes.

2Informally, feature points are the corners of a stroke, though
more generally they are defined as points in the stroke which sepa-
rate curved or straight segments of a stroke.

160 180 200 220 240 260 280 300

0

20

40

60

80

100

Figure 2: The point cloud obtained by thinning the stroke
in Fig. 1. The ’+’ marks show the original locations of the
points in the stroke and the ’.’ marks show the locations after
thinning. The green dashed line shows the result of the edge
linking process.

Stroke thinning
Our approach to stroke thinning is based on the point cloud
thinning methods (Lee 2000). As seen in Fig.2, points in an
overtraced stroke fall in a band around the intended object.
The thinning process aims to bring these points closer to the
axis of the point cloud (i.e., to the shape that was possibly
intended by the user). In this respect, our method produces
shapes unlike the kinds of shapes produced by skeletoniza-
tion and medial axis transforms.

Thinning is achieved by moving points in a direction per-
pendicular to the regression line obtained by fitting a line to
points in the local neighborhood of the point of interest. In
order to obtain reliable regression lines at the corners of a
shape, we employ a two step neighborhood selection tech-
nique.

Selecting a neighborhood
For each pointpi to be moved during thinning, neighbor-
hood selection determines the set of points to be used for
obtaining the local regression line towards whichpi will be
moved. The usual approach in cloud thinning is to define
neighborhood as all points within a preset radius ofpi. This
approach works well for smooth curves without sharp cor-
ners. For polylines or complex objects (i.e., combination
of lines and curves) our experiments show that this results
in unstable behavior at the corners, where the neighborhood
contains points from the edge containingpi and points from
the next edge. The points from the next edge act as dis-
tractors and the resulting linear regression line no longerbe-
comes parallel to either of the edges forming the corner. This
is especially problematic for edges intersecting with acute
angles.

We solve this problem by employing a neighborhood se-
lection scheme that is robust in the presence of large number
of outliers in the data. We use the random sample consen-



sus algorithm (Fischler & Bolles 1981) to select a subset of
points within a radius ofpi that roughly lie on the same line.
We compute the linear regression line using these points.
Thenpi is moved perpendicular to the regression line. Af-
ter thinning, points less than a pixel apart are merged in a
greedy fashion to reduce the number of points.

Edge linking
After the point cloud is thinned, we connect individual
points to obtain a chain of points for the whole stroke. Al-
though there are many solutions to this problem in the litera-
ture, we take a two step greedy approach. In the first step, we
connect each point to its closest neighbor. This gives us a list
of edges. We connect these edges starting with the ones that
have their end-points closest, obtaining longer point chains.
We continue this process until we are left with a single chain
linking all the points together.

The described thinning method also applies to complex
objects (i.e., combination of straight and curved segments).
Once the stroke is thinned and points are sorted, the cor-
ners (and the curved portions where applicable) of the re-
sulting approximation can be detected using any curvature
based shape approximation method (Sezgin & Davis 2004b;
Sezginet al. November 2001).

Evaluation
We conducted a preliminary experiment running our algo-
rithms on overtraced stroke data collected from 8 users us-
ing an Acer c110 Tablet PC. Although the data was collected
out of context, it served to be useful in detecting some of the
strengths and weaknesses of our approach.

We collected test data by asking each of the 8 users to
draw 5 overtraced examples of lines, circular arcs, circles,
ellipses, non-intersecting polylines and complex objects. In
each case, we visually compared the generated approxima-
tions to the shapes originally intended by the users. For the
stroke thinning method, we used a neighborhood radius of
20 pixels.

For primitive types where we could obtain direct least
squares fits (i.e., lines, arcs, circles and ellipses), in all cases
the computed approximations were in accordance with what
each user was asked to draw. This is an indication of the
robustness of direct fit methods.

The performance of our approach for polylines and com-
plex shapes was also promising. For the majority of the
strokes, the thinning operation yielded the expected result
of aligning all the stroke points on a thin path. In a relatively
small number of cases (10% of the polylines and 12.5% of
the complex objects) the thinning operation failed to align
points. This caused the edge linking step to produce incor-
rect approximations. Fig.3 shows an example where this
occurs. After thinning Fig.3-a, we obtain the set of points
shown in Fig.3-b. As seen in Fig.3-b the thinned points on
the upper (negatively sloped) portion of the stroke don’t lie
on the same line.

This sort of behavior occurs when ink in a single seg-
ment of the stroke lies on two distinct clusters, and the radius
constant used for neighborhood computation fails to group
points in these clusters together.

a. Original stroke.

220 240 260 280 300 320 340
40

60

80

100

120

140

b. Thinned and connected.

220 240 260 280 300 320 340
40

60

80

100

120

140

c. Original pen positions.

220 240 260 280 300 320 340
40

60

80

100

120

140

d. Original positions connected
with lines of uniform thickness.

Figure 3:



In Fig.3-c, the two distinct clusters are indicated using
blue and red dots. During the thinning process, for a num-
ber of points in these clusters, the neighborhood calculation
excludes points from the other cluster. As a result points on
one cluster get thinned using regression lines that are paral-
lel but are a few pixels apart.

Related Work
Previous methods on stroke approximation assume that
points are sorted spatially along the stroke and use curvature
and pen speed information to detect feature points (Sezgin
et al. November 2001; Calhounet al. 2002; Bentsson &
Eklundh 1992; Rattarangsi & Chin 1992). Cloud thinning
methods in the literature focus on smooth curves. Smooth
curves are generally easier to thin because they don’t need
the special neighborhood selection strategy similar to the
one we employ.

The stroke classification method described in (Shpitalni
& Lipson 2002) finds least squares solution of the general-
ized conic equation. For classification, it relies on classifi-
cation heuristics such as signs and ratios of certain parame-
ters in the conic equation. Furthermore, it assumes that each
stroke is a single entity (i.e., line, arc or a filleted corner).
Our approach doesn’t have this requirement and it is general
enough to be applicable to strokes that are combinations of
curved and straight segments. In addition, we obtainspe-
cific fits for each primitive class and suggest using the errors
of each type of fit as the goodness criteria as in (Sezginet
al. November 2001) rather than performing the classifica-
tion based on the relationship between the parameters that
solve a generic equation.

Future Work
As described in the evaluation section, in cases where an
individual segment of overtraced stroke forms parallel clus-
ters within itself, the thinning operation fails to group the
points on a single line. This problem can be fixed by recur-
sively applying the thinning operation with a stopping cri-
teria based on the stability of points which says if a point
cloud becomes stable (i.e., if the points don’t get moved sig-
nificantly by subsequent thinning operations), this may be
used as an indication that we converged on a solution. The
challenge would be in defining what constitutes as a “signif-
icant” change in point positions.

Another direction would be to investigate if factors, other
than the pen positions, which affect the way a stroke is ren-
dered to the user can be used during the thinning process.
Such factors are especially important, because among other
things, they potentially determine how much overtracing a
user does (e.g., until the overtraced region is mostly cov-
ered with ink). Pen pressure is an example of information
other than pen positions that affects rendering. For example,
our data collection program renders strokes thicker at points
with high pen pressure. This is part of the reason why the
clusters in the negatively sloped part of the stroke in Fig.3-
a are more apparent in Fig.3-c and d, where we only show
the sampled points and connect them with uniform-thickness
lines; and less apparent in Fig.3-a. In Fig.3-a, lines connect-

ing the few points between the two clusters is thick enough
to close the gap between the two clusters visually. Pres-
sure information can either be used to dynamically adjust
neighborhood parameters or it can be used to weigh points
with higher pen pressure more heavily using a weighted least
squares linear regression method.

The methods we presented worked well for the data col-
lected in an isolated fashion (i.e., outside the context of a
specific sketching task or domain). On one hand this is jus-
tifiable because our aim has been to do low level processing
in a domain and task independent fashion. On the other hand
it is conceivable that overtracing behaviors differ acrossdo-
mains. Studying the extent to which this is true and deter-
mining what kinds of techniques can be adapted in these sit-
uations remains as an interesting area to explore.

References
Bentsson, A., and Eklundh, J. 1992. Shape representation
by multiscale contour approximation.IEEE PAMI 13, p.
85–93, 1992.
Bookstein, F. L. 1979. Fitting conic sections to scattered
data. Comput. Graphics Image Processing, vol. 9, pp. 56-
71.
Calhoun, C.; Stahovich, T. F.; Kurtoglu, T.; and Kara,
L. B. 2002. Recognizing multi-stroke symbols.In AAAI
2002Spring Symposium Series, Sketch Understanding.
Faber, P., and Fisher, R. B. September 2001. A buyer’s
guide to euclidean elliptical cylindrical and conical surface
fitting. Proc. British Machine Vision Conference BMVC01,
Manchester, pp 521-530.
Fischler, M. A., and Bolles, R. C. 1981. Random sample
consensus: A paradigm for model fitting with applications
to image analysis and automated cartography.Comm. of
the ACM, Vol 24, pp 381-395.
Fitzgibbon, A.; Pilu, M.; and Fisher, R. B. 1999. Direct
least squares fitting of ellipses.IEEE Pattern Analysis and
Machine Intelligence Vol 21, No 5.
Lee, I.-K. 2000. Curve reconstruction from unorganized
points.Computer aided geometric design 17 pp. 161-177.
Rattarangsi, A., and Chin, R. T. 1992. Scale-based de-
tection of corners of planar curves.IEEE Transactionsos
Pattern Analysis and Machine Intelligence14(4):430–339.
Sezgin, T. M., and Davis, R. 2004a. Early sketch pro-
cessing with application in hmm based sketch recognition.
MIT Computer Science and Artificial Intelligence Labora-
tory Memo AIM-2004-016.
Sezgin, T. M., and Davis, R. 2004b. Scale-space based
feature point detection for digital ink.In AAAI 2004 Fall
Symposium Series, Sketch Understanding.
Sezgin, T. M.; Stahovich, T.; and Davis, R. November
2001. Sketch based interfaces: Early processing for sketch
understanding.Proceedings of PUI-2001.
Shpitalni, M., and Lipson, H. 2002. Classification of sketch
strokes and corner detection using conic sections and adap-
tive clustering. AAAI Spring Symposium: Sketch Under-
standing, March 25-27, Stanford CA.




