Computers & Graphics 32 (2008) 500- 510

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag i

Sketch recognition in interspersed drawings using time-based

graphical models
T.M. Sezgin**, R. Davis®

2 College of Engineering, Ko¢ University, Saryer, Istanbul 34450, Turkey
> Massachusetts Institute of Technology, CSAIL, Cambridge, MA 02139, USA

ARTICLE INFO ABSTRACT

Article history:

Received 15 December 2007
Received in revised form

5 April 2008

Accepted 15 May 2008

Keywords:

Temporal sketch recognition
Dynamic Bayesian networks
User interfaces

Sketching is a natural mode of interaction used in a variety of settings. With the increasing availability
of pen-based computers, sketch recognition has gained attention as an enabling technology for natural
pen-based interfaces. Previous work in sketch recognition has shown that in certain domains the stroke
orderings used when drawing objects contain temporal patterns that can aid recognition. So far, systems
that use temporal information for recognition have assumed that objects are drawn one at a time. This
paper shows how this assumption can be relaxed to permit temporal interspersing of strokes from
different objects. We describe a statistical framework based on dynamic Bayesian networks that
explicitly models the fact that objects can be drawn interspersed. We present recognition results for
hand-drawn electronic circuit diagrams, showing that handling interspersed drawing provides a

significant increase in accuracy.
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1. Introduction

The activity of sketching is typically (and unconsciously) rather
stylized in the sense that people sketch in predictable ways. For
example, people typically draw enclosing objects first and use a
left-to-right stroke ordering when drawing symmetric objects.
There is psychological evidence attributing such ordering phe-
nomenon to motor convenience, part salience, hierarchy, geo-
metric constraints, planning and anchoring [1,2].

The existence of ordering patterns during drawing is signifi-
cant from a recognition perspective, because, as has been
demonstrated in a variety of domains, stroke orderings can be
used to aid recognition [3-6]. All previous systems, however,
make certain assumptions that limit the complexity of the inputs
they can accommodate. One system, for example, assumes the
scene contains only one object, drawn in a single stroke [4]. Other
systems allow recognition in scenes with multiple objects with
the restriction that objects or complete object components are
drawn using a single stroke [3]. Another approach allows scenes
with multiple objects and objects consisting of multiple strokes,
but assumes that no objects share strokes [5]. A more recent
framework allows stroke sharing under certain conditions and
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shows how common stroke orderings as well as object orderings
can be used for recognition [6].

Even so, one key assumption that all these systems make about
free-hand drawing is that people complete each object before
moving on to draw the next. Yet real-world data shows this to be
untrue. For example, our analysis of free-hand analog electronic
circuit diagrams collected from electrical engineers shows it is not
uncommon for people to start drawing a new object before
completing the current one. This drawing behavior, which we call
interspersed drawing, occurs in other domains as well [7]. The
ability to deal with interspersed drawing is recognized as a major
task that sketch recognizers should support [7]. This paper is
focused on this issue, and shows how stroke ordering information
can be used for sketch recognition in presence of interspersed
drawing. Additional key features of our recognition framework
include its ability to learn various kinds of temporal patterns from
data, the ability to handle multi-stroke objects and multi-object
strokes, and support for continuous observable features.

We formally define the sketch recognition task and describe
the interspersed drawing phenomena. In Section 3, we describe a
recognition framework based on dynamic Bayesian networks
(DBNs) that models online sketching as a stochastic process
employing specialized constructs called switching parents.
Section 4 reports evaluation results showing that a significant
percentage of misrecognitions in interspersed drawings can be
avoided by explicitly modeling interspersed drawing behavior. We
conclude with a broader discussion of the related work and point
out possible future directions.
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2. Problem definition

Informally, the goal of sketch recognition is to segment digital
ink drawn by the user, and then classify it by labeling it as one or
more of the objects in the domain. We focus here on the domain of
hand-drawn electronic circuit diagrams, but our recognition
algorithm is not specific to this domain. Objects in this domain
are wires, resistors, capacitors, npn-transistors and batteries.

2.1. Terminology

We adopt the terminology and notation used in [6]. A sketch
& =51,55,...,Sy is defined as a sequence of strokes captured
using a digitizer, preserving the drawing order. A stroke is a set of
time-ordered points sampled between pen-down and pen-up
events. Each stroke is broken into geometric objects (e.g., lines,
arcs) called primitives as part of the preprocessing of the sketch.!
Let # = Pi.r =P1,P,,...,Pr be the sequence of time-ordered
primitives obtained from sketch ., and ¢ = 04, 0,, ..., Ot be the
sequence of observations (feature vectors) obtained from the
primitives.

We use segmentation to refer to the task of grouping together
primitives constituting the same object. Given a set of classes
% = {Cq,Ca,...,Cp}, classification refers to the task of determining
which object each group of primitives represents (e.g., a stick-
figure). Segmentation produces K groups G = Gy,Go,...,Gg, and
classification gives us the labels for the groups L = Li,L,,...,Lg,
L; € €. Each group is defined by the indices of the primitives
included in the group G; = p;, 5, ..., p,, sorted in ascending order.

We define sketch recognition as the segmentation and classi-
fication of a sketch. A simplifying assumption in most sketch
recognition systems is that a stroke can be part of only one object.
Our definition of segmentation in terms of grouping primitives is
more general than a definition based on grouping strokes. By
defining segmentation as grouping primitives, we prohibit
primitives from being shared across objects, but allow a stroke
(which can be composed of multiple primitives) to be part of
multiple objects (e.g., using a single stroke to draw a resistor and
the wires on either side of it).

We use interspersing to mean to the situation where the user
starts drawing one object but draws one or more other objects
before the first is completed. For example, Fig. 1 shows a circuit
fragment in which two wires (#3 and #6) are interspersed with
the transistor.

More formally, suppose we have two objects .«Z and 4. Assume
the primitive indices for the proper grouping of primitives
forming .« and # are G, = py,p0,,....py and Gz = p), p5,...,
py- We say that o7 is interspersed with # if p, <pj<p,, for 1<i<n
and |G|+ |Gyl = p,, — p; + 1. The model we present is in fact
able to handle a more general case of interspersing where .7 is
interspersed with multiple objects.

2.2. Desired features of a model

The main feature of our model is its ability to handle
interspersed drawing behavior. However, we also support five
features identified as important in previous work.

2.2.1. Learning stroke-level and object-level patterns
Stroke orderings used in the course of drawing individual
objects naturally contain certain patterns. For example, when

1 Because our domain does not have objects with curves, we work only with
line segments. However, our model is general, and supports features computed
from any kind of primitive.
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Fig. 1. A diagram illustrating interspersing: The user draws two other objects
(wires made from primitives #3 and #6) over the course of drawing the transistor
(primitives #2, #4, #5, #7, #8). Numbers indicate the primitive drawing order.

drawing arrows, one frequently seen temporal pattern is a long
line (the shaft) followed by two shorter lines (parts of the arrow
head). These are called stroke-level patterns because they capture
the probability of seeing a particular sequence of strokes with
certain properties when sketching an object [6].

Another kind of temporal pattern present in online sketches is
an object-level pattern that captures the probability of seeing a
certain sequence of objects being drawn [6]. For example, when
people draw box-connector diagrams (e.g., organizational charts,
linked lists), boxes are typically drawn before connectors.

Our system learns both stroke-level and object-level temporal
patterns of a domain from examples and uses them in recognition.

2.2.2. Handling multi-stroke objects and variations in encoding
length

Users should be able to draw freely. For example, they should
be able to draw a square using one, two, three or four strokes, or
draw a resistor with different numbers of humps (thus generating
encodings of the input with different numbers of observations).
We achieve this by explicitly modeling whether the user has
finished drawing an object.

2.2.3. Support for multiple drawing orders

We should be able to accommodate multiple drawing orders
instead of just one. For example, it should be possible to draw a
square starting with either horizontal or vertical lines. Further-
more, the system ought to learn about the user, learning for
example whether the user uses one drawing order more
frequently than others. This requires training and classification
methods that can use such information. We achieve this by
adopting a probabilistic machine learning framework where
parameters are estimated to capture the statistics of the training
data.

2.2.4. Probabilistic matching score

We would like the result of matching an observation sequence
against a model to be a continuous value reflecting the likelihood
of using that particular drawing order for drawing that object. This
is required if we are to have a mathematically sound framework
for combining the outputs of multiple matching operations for
scenes with multiple objects such that, among plausible inter-
pretations, those corresponding to more frequently used orders
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are preferred. Our framework based on DBNs satisfies this
criterion.

2.2.5. Rich feature representation

One of the steps in applying machine learning techniques to a
problem is to decide on a set of features that are sufficiently
expressive given the problem at hand. In sketch recognition, we
deal with data that is most naturally described using geometric
features such as the shape of a stroke segment, length and
orientation of line segments, radii of circles, etc. Some of these
features are categorical (e.g., shape of a stroke segment can be
arc, line, etc.) and are best represented using discrete variables.
Other features such as length and orientation are real-valued
quantities and should be represented as such. In response, our
algorithms support both discrete and real-valued features using
appropriate representations such as discrete conditional prob-
abilities and Gaussian mixtures.

3. Recognition system

The requirements listed in Section 2.2 collectively impose
constraints on the computational model used for sketch recogni-
tion. In particular, we want our model to capture the probabilistic
relationships between features extracted from a sketch, and to
model the stroke-level patterns, object-level patterns and the
common interspersing behaviors observed in a domain. We
achieve this by specifying a joint distribution over a set of random
variables that collectively define the dynamics and constraints of
our computational model of sketching. Equations describing these
constraints are tedious to list and hard to understand at best.
Fortunately there is a much simpler way of expressing them using
the visual language of probabilistic graphical models. Therefore, we
describe our models using a class of probabilistic graphical
models known as DBNs. DBNs have successfully been used to
model time series, and are therefore appropriate for problems
with a temporal nature. We start with a brief overview of DBNs,
then describe our model in detail.

3.1. DBNs and switching parents

Because our model of sketch recognition uses DBNs and a
relatively unknown feature of DBNs called switching parents, we
briefly review them both.

3.1.1. Dynamic Bayesian networks

Bayesian networks encode the joint probability of a set of
variables Z = {Z;,...,Z,} where the graphical structure of the
network encodes the conditional dependencies among the
variables. DBNs extend Bayesian networks and model joint
distribution of a set of variables over time, by representing the
conditional dependencies between variables using a pair of
Bayesian networks (B1,B_.). B; defines the prior for the Z; values
at time t = 1, and B_. defines how variables at time t + 1 relate
both to each other and to those from time t.

3.1.2. Switching parents

Our model contains graphical notation (dotted and dashed
arrows in Fig. 3) indicating conditional dependencies that change
(switch) based on the value of a switching parent. The use of
switching parent mechanism (also known as context specific
independence or Bayesian multi-nets) allows us to efficiently
represent conditional dependencies that change as a function of
another node’s value [8-10].

Fig. 2. Illustration of the switching parent mechanism.

Fig. 2 shows a simple example of switching parents. In this
network OBS has two parents P1 and P2, and a switching parent
MUX that controls which one of P1 or P2 is activated. The
semantics of the network indicates that

P(OBS|P1,P2) = P(OBS|P1,MUX = 1)P(MUX = 1)
+ P(OBS|P2, MUX = 2)P(MUX = 2)

We use switching parents as an efficient mechanism for selecting
the process corresponding to the active object (i.e., the object
currently being drawn) in our dynamic model of sketching.
Specifically, in our model, shown in Fig. 3, only one of the object
models (an npn-transistor, resistor, capacitor, battery or wire,
indicated by N, R, C, B and W) is activated at any given time based
on the value of the MUX node. The rest of our discussion assumes
that the reader is comfortable with DBNs and the DBN
terminology. An excellent review of DBNs can be found in [11].

3.2. Model description

The DBN specifying our computational model of sketch
recognition is shown in Fig. 3. The figure shows only two frames
of the DBN (the initial and repeating frames), as this is the
conventional way of representing a DBN. As is the case for all
DBNs, during classification the network is “unrolled” to produce
as many frames as the number of observations. Fig. 4 shows a
small circuit fragment and an example of the unrolled DBN.

3.2.1. Description of the nodes

Our network has three groups of nodes. First are the
observation nodes OBS; that serve as the input to sketch
recognition. These are the only observable nodes during recogni-
tion. Each observation OBS; is a feature vector computed based on
the ith primitive P; extracted from the input sketch via feature
extraction.

The second group of nodes are the MUX; nodes which are
multi-valued discrete variables holding our hypothesis of what
object P; is a part of and whether or not the user is interspersing
any two objects. The classification for each primitive is obtained
by computing the set of assignments to the nodes MUX;.t that
maximize the joint probability of the DBN for a set of observa-
tions. Hence the MUX;t nodes provide the output of sketch
recognition.

The third group of nodes are auxiliary nodes. The END; node is
a discrete boolean node that reflects our belief about whether the
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INITIAL FRAME

REPEATING FRAME

Fig. 3. Dynamic Bayesian network representing our model that handles interspersed drawing.

LT
. .,

t=16

t=18

Fig. 4. A circuit diagram and a fragment indicated by the dotted circle (a). The unrolled dynamic Bayesian network fragment corresponding to the circuit fragment (b).

During recognition, only the OBS nodes are observable—indicated by darker color.

user has just completed drawing the current object by drawing
the primitive P;. Explicitly modeling when objects are completed
allows us to support multi-stroke objects and variations in the
encoding length mentioned in Section 2.2.2. Because the training
data are fully labeled, during training we know when objects are
completed. Thus the END; nodes are observable in training but
hidden during recognition. The remaining nodes are always
hidden and they capture the statistics of the stroke-level patterns
for domain objects. For example, parameters of the R node encode
the statistics of observations that are typically seen when users
draw resistors. Similarly, there are corresponding nodes for each
object in our domain (N, C, B and W for npn-transistors,
capacitors, batteries and wires). The nodes R’, N’, C, B’ and W’

define priors for these nodes, as we explain below. For ease of
reference, we will use the generic notation C; to refer to each of
these object classes in our domain (C; =N, C, =R, CG3=C,C4 =B
and Cs = W).

3.2.2. Description of the model topology

Recall that the goal of sketch recognition is to assign labels to
primitives that constitute valid domain objects. The MUX node in
our model represents the label of the object being drawn and the
information of what objects are interspersed when interspersing
occurs. Its cardinality is equal to the sum of the number of object
classes and the number of objects that can be interspersed. The
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semantics of MUX; = i is determined by the following:

if 1<i<|¥|=drawing object i,C; active,
if i>|%|=interspersing .7 and %, given by
the function 7 ;. (i) = (<Z, %)

In our current domain, there are five object classes, i.e., |%| = 5.
The function % ;,:(i) maps values of MUX to a pair of object classes
(o7, #). We construct it based on the types of interspersings seen
in the training data. For example, in our domain npn-transistors
were interspersed with wires, so we define 7 ,,(6) = (N,W).
Construction of the interspersing function %, can be done
automatically by a simple analysis of the training data that detects
interspersings.

For each object class there is a node capturing the dynamics of
the stroke-level features for that object (nodes C;,Cs,...,Cg,
shown by N, R, C, B and W in Fig. 3). The “primed” nodes
(C1,Cy....,Cly)) are auxiliary nodes for ensuring that the form of
the conditional probabilities for nodes C; in the initial frame is the
same as those in the repeating frame (i.e.,
Pg, (Ci|Parents(C;)) = Pg_ (Cj|Parents(C;))). Auxiliary nodes have the
same cardinality as their children (i.e., |Cj| = |Ci|).

3.2.2.1. Conditional dependencies for the initial frame. The MUX
node in the initial frame has no parents; it has a prior that sums to
1 for values corresponding to object classes, and O for values
corresponding to object interspersings. For example, a plausible

choice for the prior values is to use a uniform distribution:
PMUX, — i 1/16] if 1<i<|%)
MUX; =D =1 if i> %)

The OBS node is conditioned on the MUX and one of the C; nodes
as determined by the value of MUX. This is an example of the
switching parent mechanism. The distribution for OBS can be
broken into two cases depending on whether the user is currently
interspersing an object of class C; with €, given by
Fine()) = (G}, Cp):
P(OBS|MUX = i,Cy.,)
P(OBSMUX =i,C;) if 1<i<|¥)|
drawing an object
of type C;

if i>1%)

F (D) = (Cj, C)
interspersing

C; with C;

— J POOBSMUX = i,Cy)

The interspersing function # ;,.(i) mapping values of MUX to the
range 1<i<|%| is constructed prior to training as explained above.
The use of switching parents in this fashion also allows us to learn
and share a single model for objects that are interspersed: instead
of learning a wire model and an interspersed-wire model, we
learn a single wire model and reuse it. The END node also has
MUX as its switching parent: P(ENDMUX =1i,C;,C;,...,Cy) =
P(END|MUX = i,C)).

Each G; node in the initial frame is conditioned on the MUX
and C; nodes. The prior for the C; nodes is represented by a sparse
conditional probability table that sets P(C; = 1) = 1.% This is our
way of saying all stroke-level processes are at their beginning
state when we enter the initial timeslice, and based on the
value of MUX only one of these nodes updates its state using the

2 Note that we can get away with having only one auxiliary variable C; if all the
C; nodes have the same cardinality.

inter-frame  probability  distribution  Pg_ (C;.|Parents(C;;)) =
Pg_(Ci|Cit_1,MUX), substituting the value of C; for C;; ; for the
initial update. This allows the process selected by MUX to change
its state from its default begin state to a state where it can
generate the first observation OBS;. Using the probability
distribution function Pp_(C;.|Parents(Ci;)) learned over many
examples in the first slice of our DBN gives us an efficient way
of sharing probability distributions through a parameter tying
mechanism [12]. C; nodes that are not selected by the MUX node
in the initial frame simply copy values from C;.

3.2.2.2. Inter-slice dependencies. The MUX node at time t is con-
ditioned on MUX,_; and END_;. Its value is updated based on the
object-level transition probabilities if END,_; indicates that the
current observation marks the beginning of a new object (not
necessarily of a different class, but a different instance). The MUX
node can change state even if the END;_; is false (i.e., OBS;_; does
not mark the end of an object). These cases correspond to inter-
spersings and P(MUX; = i|MUX;_; = j, END;_; = false)>0 only if
we have seen objects of type C; being interspersed with other
objects in the training data and i>|%|.> The Cit nodes in the re-
peating frames are conditioned on the MUX; and C;;_; nodes. The
conditional probability table for Pg_ (C;¢|Parents(Cjy)) is estimated
from the data subject to a few constraints that we specify prior to
training in the form of deterministic conditional probability tables
[12]. Specifically, we require that:

P (Ciy = CIMUXy = m,Ci¢_q = C')

if m#i,1<m<|%l,c=1

if m#i, 1<m<|%|,c#1

if m>|%|,c =, F (M) = (C;,C,)

if m>|%|,c#c, F ine(m) = (C;, C,)

|
o = O =

where x indicates a wild card.

These constraints ensure that if the user is drawing an object
other than the one associated with the node Ci, the state of that
node is reset to the begin state, and if the user has started
interspersing an object of type C; with any other object, the state
of the G; node is passed on to the next slice. This allows us to save
the state of the process associated with C; so that it can resume
after the interspersing is over.

3.3. Sketch preprocessing and feature extraction

As in most sketch recognition systems, we preprocess an input
sketch to extract features that characterize the input. Given an
input sketch, we break each stroke into geometric primitives
using the early sketch processing toolkit described in [13], then
compute a number of geometric features for each primitive. To
facilitate direct comparison of recognition rates with previous
work, we use the feature representation suggested by [6]. For each
primitive P;, we obtain an observation vector O; represented as a
five-tuple (I, Al;, 0, AO;, sgn,) where:

e [; is the length of P;,

e Al is relative length (I;/l;_1,1 for t = 1),

e 0; is the angle with respect to the horizontal axis,

e A0, is the measure of relative angle between P; and P;_4,

e sgn, is the direction that the stroke turns when moving from
P;_; to P;.

3 For 1<i,j<|%) the conditional probability P(MUX; = ilMUX;_; = j, END;_; =
false) is 0 for i#j, and a non-zero value for i = j, thus it can be represented using a
sparse table.
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The value of 46, is given by the magnitude of the cross product
i x v of vectors i, V, which are length-normalized versions of P;
and P;_; pointing in the direction of pen movement along each
primitive. The turn direction (sgn,) is the only discrete feature and
is set to O for negative values of ti x V and 1 for positive values or
t=1.

3.4. Training and recognition

In our model, the MUX;t, ENDy1, and OBS;t nodes are
observable during training; we estimate the parameters of our
DBN using these values. During recognition, only the OBS;.1 values
are observable. Using probabilistic inference, we compute the
assignments to the MUX;t and END;t nodes that maximize
the joint probability of the network. The MUX, 1 values give us the
primitive labels, and ENDq.t give us the object boundaries.

As mentioned earlier, we support continuous features. This is
done by representing the OBS;r nodes using mixtures of
Gaussians [12]. We found Gaussians with three components to
work well for our domain. We also set the cardinality of the C;
nodes to be 6 based on the criteria mentioned in [5].

3.5. Implementation details

We used the Graphical Models Toolkit (GMTK [12]) to
implement our model. We chose GMTK, because it supports a
number of efficient representation mechanisms that we take
advantage of such as parameter tying and deterministic condi-
tional probability tables. As a practical matter, we were limited to
work with the Frontier Algorithm—an exact inference algorith-
m—as it is the only one supported by GMTK [36].# GMTK allows
one to specify graphical models using the GMTK model specifica-
tion language where the model structure, types of the probabil-
istic dependencies, and the set of observable and hidden model
variables is specified prior to model training.

In GMTK, the training and inference algorithms operate on a
triangulated version of the model graph, and as runtime complex-
ity depends on the goodness of the triangulation, obtaining a good
triangulated graph is important. Unfortunately, computing the
optimal triangulation is known to be NP-hard [14]; we instead
resort to GMTKs triangulation heuristics to search for good
triangulations. Although this search takes a long time, (e.g., we
allow it to run for on the order of 6 h on a 2.6 GHz machine), once
a good triangulation is found, it can be reused for recognizing
different sketch instances as long as the model remains the same
(i.e.,, the model topology, node cardinalities, and the set of
observed/hidden nodes remain the same).

3.6. Design considerations

There are a number of design choices that we made while
building our model that might need reconsideration if it were
applied to a different domain.

3.6.1. Independence assumptions

One design question that needs consideration when building
this model is whether or not the state transition probabilities
for the MUX¢,; node depend on the value of C; from time t. In
the formulation above, we assumed that the point at which the
user starts interspersing is conditionally independent of the state
of the current object process (e.g., the probability of interspersing

4 There are a number of alternative exact inference algorithms, and even a
number of approximate inference algorithms with better algorithmic time
complexities. Unfortunately, these are not supported by GMTK.

a wire is independent of how much of the transistor is drawn).
This may not be the case for all domains. In domains where
beginning an interspersing is more likely for certain partial
drawings, it would be appropriate to add a conditional depen-
dency arc from C; at time t to MUX,,; that switches on when the
interspersing begins. Obviously when such a conditional depen-
dence is introduced, more examples will be necessary to estimate
model parameters without overfitting. If not enough training
examples are supplied, interspersings that begin at states
not covered in the training data will receive zero probabilities.
This is a sparse data problem and can be handled using
regularization techniques. A discussion and an example of how
this can be done using pseudo-counts and Dirichlet priors can be
found in [15,16].

3.6.2. Multiple interspersings

A second design question that needs consideration is whether
we allow more than two objects to be partially drawn at any given
time (multiple-interspersings) or whether we allow intersper-
sings between objects of the same type (same-class intersper-
sings). We framed our approach for handling interspersing based
on our observations about domains that we studied in current and
previous work (e.g., finite state machines, UML diagrams, Course
of Action Diagrams, stick-figures and emotions [5,6]), where we
did not observe multiple or same-class interspersings. As a result
our model does not handle such cases. It would be an interesting
exercise to investigate the drawing patterns in other domains to
see if any of them could benefit from having more general models
of interspersing. Work in [17] suggests two alternative models for
such domains.

4. Evaluation

We report recognition rates for our model on sketches from the
analog circuit diagrams domain to illustrate its performance in
absolute terms. We also measure the incremental benefits of
modeling interspersing by comparing the correct recognition rates
to those obtained using the recognition algorithm reported in [6].
That algorithm is an appropriate baseline because it does not
handle interspersing, but otherwise supports temporal sketch
recognition, albeit using a substantially different architecture. To
make the comparison to the baseline meaningful, we ran our
system on the same data set, which contains circuit diagrams
collected from 8 electrical engineers (10 sketches per participant).
Of the eight participants, participants #1, #5, #6 and #7 produced
interspersed sketches. Using examples from these subjects, we ran
a series of hold-one-out experiments.

4.1. Quantitative results

We trained the baseline model using circuits with no
interspersings (because the baseline cannot handle interspersing)
and trained our model using all the data. We tested both models
using all the examples. To facilitate comparison with previous
work, we trained user-specific (i.e., personalized) models.

Table 1 shows the average correct recognition rates for each
participant obtained using the baseline and our system, computed
by leave-one-out cross validation. The table also shows the
average and maximum percentage reductions in the error rates
for each user. As seen here, on average, handling interspersing
always improves performance, and allows 20-37% of misrecogni-
tion errors to be corrected. A paired t-test for the values in Table 1
shows the difference to be statistically significant for p<0.05 and
3 degrees of freedom.
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Table 1
Mean correct recognition rates for the baseline (X,) and our system that models
interspersings (X;)

Participant ID

1 5 6 7
Ry 89.4 89.8 93.0 84.6
X 92.9 92.2 95.6 87.7
Aerr 33.0 23.5 371 20.1
maxA4 61.5 333 100.0 54.5

The percentage reductions in the error rates and maximum error reductions
achieved for each user (4e+ and max4). On average, handling interspersing
patterns always improves performance.

4.2. Quantifying errors per-interspersing

The percentages presented above do not show the full extent of
the consequences of not handling interspersing, because the
percentage of errors due to interspersing is diluted by the large
number of other components successfully recognized. A more
informative measure of the benefits of handling interspersing can
be seen if we look at the number of misclassified primitives per
interspersing.

To measure this we ran both the baseline and our model on a
control group that contained 10 sketches with no interspersings,
and a test group that contained versions of these sketches with
interspersings. The interspersed version of each sketch was
obtained by moving one of the wires preceding/following a
transistor back/forward in time. Our use of these examples
ensures that we measure the misrecognition effects due only to
interspersing.

We trained the baseline with the non-interspersed data and
supplied our model with the additional interspersed examples.
Table 2 shows the number of misrecognized primitives per
interspersing. The first two rows show the number of total
primitives and the number of added interspersings per sketch. The
table also shows the total number of primitives misclassified by
the baseline and by our model. The last two rows show the total
number of primitives that the baseline misses because it cannot
handle interspersings and the number of primitives missed by the
baseline per interspersing. As seen in the table, introducing
interspersings causes as many as 16 primitives to be misclassified.
Considering that a transistor has five primitives, this is worth
about three transistors. When we normalize the number of
misrecognized primitives per sketch by the number of intersper-
sings, we get about 2-6 misrecognized primitives per intersper-
sing.

In the best case, the errors caused by each interspersing will
require at least one correction by the user (e.g., when all the
misrecognized shapes belong to the same shape). In the worst
case, the errors may require as many corrections as the number of
misclassified primitives, further showing the utility of modeling
interspersing.

4.3. Effects of increased model complexity

Our model is more powerful and also more complex than the
baseline, because it can model interspersings. The previous
subsection quantifies the performance improvement gained by
adopting a more complex model, but a related question is whether
the added complexity hurts recognition rates if the test data
contains no interspersings. To answer this question, we trained
our baseline system (which does not model interspersings) using

non-interspersed data and supplied our model with additional
interspersed examples.’

We ran both the baseline and our model on non-interspersed
sketches. As before, all the training and testing was done using
leave-one-out cross validation. We used the Wilcoxon matched-
pairs signed-ranks test to compare the performance of the two
models with the null hypothesis that the paired observations
come from the same distributions. The Wilcoxon test fails to reject
the null hypothesis (W+ =17, W— =4, N=6, p<0.22). We
regard this result as promising evidence that the complexity of
our method does not hurt recognition for non-interspersed
drawings.

4.4. Analysis of training time

Parameter estimation is done using the expectation-maximi-
zation (EM) algorithm. For a given training set, parameters usually
converge to their final values within 20-30 EM iterations. As it is
usually the case, we limit the maximum number of allowed EM
iterations and automatically stop parameter estimation if an
upper bound of 100 EM iterations is reached.

We measured the time taken by a single EM iteration as a
function of the training data size by increasing the number of
sketches in the training data set from 1 to 20, each containing
80-109 primitives. Fig. 5 shows the time spent for a single EM
iteration in seconds as a function of the number of primitives. As
seen in the graph, over the range shown the training time scales
linearly with respect to the problem size.

4.5. Analysis of the runtime

The runtime of recognition algorithms is one of the main
concerns in sketch recognition [18]. In fact, efficiency concerns
has been one of the main motivations for exploring temporal
recognition algorithms [5,6]. In response, we measured runtime
performance at two different levels of granularity: primitive-level
and sketch-level.

Primitive-level runtime performance measures the marginal
cost of increasing the input size by one primitive. Fig. 6 shows the
time spent for inference as a function of the number primitives, on
a Linux machine with a 1.6 GHZ Intel processor and 4 gigabytes of
memory. As seen in the graph, over the range shown the runtime
scales linearly with respect to the problem size. This is consistent
with the algorithmic complexity of inference in our DBN, which is
O(T) where T is the length of the observation sequence. The
marginal cost of processing a single primitive, given by the slope
of the runtime line (colored blue), is 0.185 s/primitive. This easily
allows 5-6 primitives to be processed per second, which is
roughly equivalent to processing 2-3 capacitors, a typical resistor
or a transistor per second.

Sketch-level runtime performance measures the amount of time
needed to interpret a complete sketch and varies as a function of
the number primitives obtained from the sketch. Table 3 shows
sketch-level runtime performance of our system. The first row
shows the number of total primitives. The second and third rows
show the amount of time spent by our system for interpreting
each sketch and time that was taken to draw each sketch. As seen
in the table, time required for interpretation is only a small
fraction of the drawing time.

Finally, as mentioned earlier, in addition to the sketch size, the
computational complexity of inference depends on many other
factors such as the goodness of the triangulation, the inference

5 Note that if our model is trained with only non-interspersed examples, then
it behaves precisely like the baseline.
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Table 2
This table shows the number of misrecognized primitives per interspersing

Sketch ID X

1 2 3 4 5 6 7 8 9 10
Total primitives 90 85 104 101 92 100 87 105 80 98 94.2
Added interspersings 2 2 4 4 3 3 2 2 2 4 2.8
Missed by the baseline 7 9 15 12 12 12 13 13 11 19 123
Missed by our model 3 3 4 1 0 0 2 2 2 3 2
Difference 4 6 11 11 12 12 11 11 9 16 10.3
Missed prim./intersp. 2 3 2.75 2.75 4 4 5.5 5.5 4.5 4 3.8

The first two rows show the number of total primitives in each sketch and the number of added interspersings. Next two rows show the number of primitives misclassified
by the baseline and by our model. The next row shows the number of primitives that the baseline misses because it cannot handle interspersings and the last row is the

number of primitives missed by the baseline per interspersing.

150
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Fig. 5. Time spent for a single EM iteration in seconds as a function of the number
of primitives in the training data. The blue line represents the time spent for a
single EM iteration. The green line represents system overhead. Red line is the sum
of the two.

seconds

0 20 40 60 80 100 120 140 160
Number of Primitives
Fig. 6. Runtime plotted as a function of the number of primitives extracted from a

sketch. The blue line represents the time spent for inference. The green line
represents system overhead. Red line is the sum of the two.

algorithm used, and the state space of the process being modeled
(as determined by |%]). The large number of exact and approx-
imate inference algorithms and the NP-hard nature of finding
optimal triangulations makes an exhaustive exploration of all
factors affecting the runtime impractical. Nevertheless, we have
successfully run our model for || = 10. Table 4 lists the average
processing time per primitive obtained over 10 iterations for
T = 90. As seen in the table, the mean time needed to process a
single primitive is still under a second.®

4.6. Qualitative examples and discussion

Fig. 7 shows an example illustrating how interspersed drawing
causes misrecognitions if not handled properly. This example is
particularly instructive because it shows that interspersing only a
single primitive can lead to a cascade of misrecognitions. In this
example, the user drew the collector of the transistor Q2 and the
wire connected to it using a single stroke (stroke #15, which is
also an example of multi-object stroke).

Two interpretations of the circuit are shown in Fig. 8. Fig. 8a
shows the interpretation obtained by running the baseline. In this
figure, there are two recognition errors. Q2 is misclassified as a set
of wires, and the two wire segments connected to the base are
misclassified as a resistor.

Fig. 8b shows that both errors are fixed by our model, which
learned that with probability 0.14 wires can be interspersed while
drawing transistors. This aspect of the model not only allows the
transistor to be identified correctly, it also helps the two wire
segments to be classified correctly, using the knowledge that
transistors very rarely follow resistors, P(MUX; = NPN|MUX,_; =
RESISTOR) ~ 0. This example shows the benefits of modeling both
object-level patterns and interspersing.

The incremental benefits of using a more elaborate model may
at times appear to be small. Nevertheless, correcting each
misclassification requires effort on the part of the user and gets
in the way of the main task. Hence, we believe the error reduction
rates we have demonstrated are significant in the context of a
sketch-based user interface.

5. Related work

Researchers have reported the existence of interspersed
drawing phenomena in other domains, and identified the ability

5 Note that, the variation in the runtime is also affected by the change in the
goodness of the triangulation, which we necessarily have to recompute after
modifying the model.
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Table 3
Sketch-level runtime performance
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Sketch ID X

1 2 3 4 5 6 7 8 9 10
Total primitives 90 85 104 101 92 100 87 105 80 98 94.2
Interpretation time 16.1 15.3 18.7 18.1 16.4 17.9 15.5 18.9 14.3 17.6 16.9
Drawing time 1121 67.4 85.8 84.7 84.4 84.1 57.1 62.0 46.8 88.1 77.3
IT/DT ratio 0.14 0.22 0.21 0.21 0.19 0.21 0.27 0.30 0.30 0.20 0.22

The first row shows the number of total primitives. The remaining rows respectively list the time spent by our system for interpreting each sketch, the time taken to draw

them, and the ratio of the two.

Table 4
Mean time spent per primitive in milliseconds and the corresponding standard
deviations for 10 runs with || = 10

Runtime System overhead Total
Mean 57.02 4.48 61.50
Std. deviation 0.67 0.32 0.62
13
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—

Fig. 7. One of the circuits used in the evaluation. Stroke ordering for a fragment of
the circuit is shown by numbers.

to deal with it as an important challenge for building robust free-
sketch recognition systems [7]. However, so far, there has not been
much work specifically addressing the interspersing issue. This
section reviews various recognition methods (symbol recognizers,
spatial and temporal sketch recognizers) and provides a discus-
sion of their strengths and weaknesses compared to our method.

5.1. Symbol recognition systems

The work on symbol recognition includes gesture recognition
systems. Symbol recognizers perform isolated object recognition
based on geometric and image-based descriptors [19-24]. These
systems assume that only a single instance of a properly
segmented object is given as input, hence do not address the
sketch segmentation and interspersing issues. There are also
systems that assume the scene contains an object of a known
class, and define sketch recognition as the identification of its
subcomponents [25]. This is unlike the definition of sketch
recognition that we adopt here.

5.2. Spatial recognition systems

The vast majority of sketch recognition systems do not use
temporal features, hence we refer to them as spatial recognition
systems. Our approach to recognition complements these by its
ability to exploit temporal information.

[ e 1P e [€SiStOT Capacitor = battery Wire === interspersing

z 77
KL
S

= T [
K,
z 2

Fig. 8. Interpretations of the interspersed circuit shown in Fig. 7 by the baseline
and our system. The baseline encounters a cascade of misclassifications due to
interspersing (top) while we correctly identify the interspersing (bottom).

Template-based approaches to recognition are the most
prevalent spatial recognition method [18,26,27]. These methods
require object descriptions (also referred to as templates or object
models) that describe the domain and the objects. One limitation
of template-based methods is scalability of runtime performance.
Scalability issues arise from the combinatorial cost of template
matching and are typically addressed by pruning the search space
of matches, at the cost of overlooking valid interpretations.”
Another limitation of these systems is the tedious and labor-
intensive nature of producing object descriptions. Generating
object descriptions generally requires an expert to study the
domain objects, and iteratively refine a set of constraints that
work well for real data. Recent work on learning object
descriptions from examples might remedy this shortcoming, if
its applicability to realistic datasets can be demonstrated [28,29].
By contrast, our method learns object models automatically from

7 Note that search space pruning techniques can also be incorporated into our
framework by setting the probability of interpretations with low probabilities to
zero, or by committing to interpretations with high probabilities. Although this is
not directly supported by GMTK, [17] describes how such information can be
included using by making hidden nodes observed during inference.
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examples and scales linearly with the sketch size. It is also worth
noting that two of the systems mentioned above, [26,27], were
designed and evaluated for online recognition scenarios in the
sense that their interpretations were updated after each stroke is
added. Thus, their performance implicitly depends on the drawing
order, and—perhaps to a greater extent—on the existence (or lack
thereof) of interspersings. We believe it would be interesting to
investigate the effect of interspersing on the matching time and
recognition rates of these methods. This would give us a better
understanding of how these methods deal with real data.

Szummer et al. [30] describe a generative Bayesian framework
for shape recognition. They use dynamic programming to achieve
segmentation and classification simultaneously. The major
strength of their approach is the ability to recognize messy
drawings using single examples by assuming a Gaussian noise
model. As was the case for some of the approaches described
above, the authors make certain assumptions to keep the search
for the optimal segmentation tractable. Specifically they assume
that subsets of stroke fragments considered during segmentation
contain no more than seven straight line segments. This might be
a severe limitation in domains with moderately complex objects,
such as the sloppy stick-figures considered by Mahoney et al.
[18,31] or the domain of military course of action diagrams.

Later work by Szummer et al. [32] describes a graphical model
for simultaneously segmenting and labeling organizational charts.
In that work, they demonstrate that labeling and segmenting a
sketch simultaneously improves recognition performance. They
use a set of 98 features, some of which they claim to be temporal,
but there is no information on the specifics of any of the features.
They also make a number of simplifying assumptions to keep the
search tractable (e.g., maximum clique size for recognition, hard
thresholds for distance constraints).

In [33], Kara et al. present a circuit diagram recognition system
that does segmentation using a heuristic called “ink-density” and
runs isolated symbol recognizers to generate an interpretation.
Their system has a number of strengths such as fast recognition,
support for multi-stroke objects and multi-object strokes and
arbitrary stroke orderings within each object. On the other hand
the segmentation algorithm used in this work does not handle
interspersed drawing, so the user is required to finish an object
before starting a new one.

Shilman et al. present a discriminative recognition framework
combining stroke-based and image-based features [34]. Their
features are purely spatial and image-based, hence interspersing
is not an issue. However, as with some systems above, to keep
their search tractable they assume that objects have no more than
eight strokes, and that strokes constituting an object are located
within a prespecified distance.

5.3. Temporal recognition systems

As noted briefly in the Introduction, a number of systems use
temporal stroke orderings to perform sketch recognition [3-6],
but with the exception of [6], none of these systems support
stroke sharing and continuous feature representations as the
system reported here does. The work in [6], however, does not
support interspersing, motivating the work presented here.

Work by Anderson et al. describes a symbol recognition
method that models the temporal regularities using hidden
Markov models and chain-code-based features [4]. They assume
isolated objects, hence do not perform segmentation.

Simhon and Dudek present a sketch interpretation and curve
refinement system using a hierarchical hidden Markov model
(HHMM) [3]. They assume that the parameters of the object-level
process (which they refer to as the scene level) is supplied by the

user using a semantic graph representation. By contrast, we learn
the parameters of the stroke-level and object-level patterns from
data, and use the more efficient DBN representation to avoid the
O(T?) complexity of HHMMs. Also, they do not support inter-
spersed drawing, multi-stroke objects and real-valued continuous
features.

The HMM-based sketch recognition method presented in [5]
improves upon the work by Simhon and Dudek by allowing multi-
stroke objects through combining matching results from multiple
HMMs within a dynamic programming framework. However this
work does not model object-level patterns, does not support
continuous features, and assumes no interspersing.

6. Future work

As with other temporal recognition systems, our temporal
model does not incorporate any spatial or geometric constraints
beyond those used to encode stroke sequences, and as a result
recognition is based strictly on temporal patterns, not shape.
Although it is possible to augment our feature sets to include
limited shape information extracted from bigrams or trigrams of
primitives, integrating a comprehensive list of measurements
reflecting constraints between arbitrary groups of strokes (as in
[26]) is currently not possible if we would like to accommodate
interspersed drawing.® Therefore, combining spatial and temporal
features in the presence of interspersing is an interesting avenue
to pursue.

Studying drawing behaviors of real users in real world
conditions for a variety of domains would give us a better
understanding of why people intersperse strokes and how the
domain affects the interspersing behavior. This might help us
design better recognition systems. It would also be relevant for
psychologists who are interested in the cognitive modeling of the
drawing process. Our discussions with circuit design experts have
revealed that the main cause of interspersings wires with
transistors could be a design convention called “following the
current” which advocates drawing from top (the positive voltage)
towards the bottom of the page (ground). Further research is
needed to see how and why people intersperse strokes in other
domains, as has been initially explored in [7].

It is also important to explore how properties of the user
interface affect the interspersing behavior. For example, our
domain contained fewer interspersings compared to the digital
logic diagrams domain studied by [7]. Part of the difference might
be due to reasons intrinsic to the domain, but properties of the
user interface might also have an effect. For example, systems that
use explicit buttons or timeouts for indicating segmentation (e.g.,
[23,35]) might instill and reinforce non-interspersed drawing
habits that may carry over to applications which do not require
such behavior. Effects of the interface design on the degree of
temporal regularities and the interspersing behavior is worth
exploring.

Finally, we need to find ways of handling interspersed drawing
within other recognition frameworks. We have adopted a
computational model of sketching that defines sketching as a
stochastic generative process. This in turn shaped the way we
addressed the interspersing problem. Further research is needed
to find ways of addressing the problem within other frameworks.
It is quite likely that the nature of the solution for each framework
will depend on the specifics of the recognition algorithm in use
(e.g., template matching, image based recognition). Establishing

8 If we assume no interspersings, an approach based on dynamic program-
ming can be used to combine spatial and temporal constraints as outlined in [17].
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ways of handling interspersing within other recognition frame-
works would make it possible to rate the robustness of each
system with respect to interspersing and—with a better under-
standing of which domains show more interspersing—would
allow us to choose the appropriate algorithm for a given domain.
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