
Sketch Recognition for Course of Action Diagrams

by

Kevin Stolt

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

September 7, 2007

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Randall Davis

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur C. Smith

Chairman, Department Committee on Graduate Students



2



Sketch Recognition for Course of Action Diagrams

by

Kevin Stolt

Submitted to the Department of Electrical Engineering and Computer Science
on September 7, 2007, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

This thesis describes a software program that recognizes hand-drawn Course of Ac-
tion diagrams. User input is through sketching, or a combination of sketching and
speech. Course of Action symbols are recognized incrementally, and the informal
sketching input is replaced with formal images of the symbols. The system uses the
LADDER shape definition language to represent the geometric properties of shapes,
and is capable of recognizing 327 distinct Course of Action symbols. The Intermediate
Feature Recognizer is used to recognize shapes of intermediate complexity and is ca-
pable of recognizing some shapes that cannot be described using LADDER defintions.
By detecting features of intermediate complexity, the system is capable of automatic
error correction of some stroke segmentation errors and dealing with filled-in and
multi-segment lines. The system is also able to recognize a combination of speech
and sketching input of some information that can’t easily be communicated through
sketching alone. The system has a shape grammar to allow the sketch recognizer to
conform to rules for creating Course of Action symbols. The system is also capable
of “interpreting” the sketch - understanding the higher-level details of military units
and actions that were sketched in the Course of Action diagram.

Thesis Supervisor: Randall Davis
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

I would like to thank my supervisor Professor Randy Davis for his advice and support

throughout this project. Without his help, this thesis would not have been possible.

His assistance provided excellent feedback on research ideas and kept me motivated

to improve the system.

I would also like to thank Aaron Adler for always enthusiastically helping whenever

I had a question or needed assistance and other members of the Design Rationale

Group for their help throughout the year.

Finally, I would like to thank my family - for their constant support and encour-

agement.

5



6



Contents

1 Introduction 15

2 Background 19

2.1 Course of Action Recognition Systems . . . . . . . . . . . . . . . . . 19

2.2 Motivations for Intermediate Features in Sketch Recognition . . . . . 20

2.3 Course of Action Symbols . . . . . . . . . . . . . . . . . . . . . . . . 22

3 System Usage 27

3.1 Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Creating shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Editing symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Multimodal Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Symbol Naming . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Editing Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 System Architecture 33

4.1 Sketch Recognizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Primitive Recognizer . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Intermediate Feature Recognizer . . . . . . . . . . . . . . . . . 36

4.1.3 Domain Recognizer . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 COA Domain Handler . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Apply COA symbolic rules to Sketch Recognizer . . . . . . . . 39

4.2.2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7



4.3 Multimodal Recognizer . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Speech Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Combining Speech and Pen Input . . . . . . . . . . . . . . . . 49

5 Intermediate Feature Recognizer 53

5.1 Limitations of LADDER System . . . . . . . . . . . . . . . . . . . . . 53

5.2 Shape Detection using the Intermediate Feature Recognizer . . . . . . 54

5.3 Error Correction using the Intermediate Feature Recognizer . . . . . 55

5.3.1 Correcting initial stroke segmentation errors . . . . . . . . . . 56

5.3.2 Correcting filled-in lines and multi-segment lines . . . . . . . . 58

5.4 Recognition of Intermediate Features . . . . . . . . . . . . . . . . . . 58

5.4.1 Dashed lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.2 Compound lines . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.3 Dashed Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.4 Dashed Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Modifications of the LADDER System 63

6.1 Multiple Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.1 Symbol Editing . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Image Replacement and Composition . . . . . . . . . . . . . . . . . . 66

6.2.1 Preserving Scale, Translation, and Rotation . . . . . . . . . . 67

7 Results 73

7.1 Recognized Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3.1 Future Capabilities of Multimodal Input . . . . . . . . . . . . 76

8 Conclusion 85

8



List of Figures

1-1 Example of a basic COA sketch . . . . . . . . . . . . . . . . . . . . . 16

2-1 A complicated glyph bar found in the COA diagram program nuSketch

Battlespace [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2-2 An example of a COA symbol . . . . . . . . . . . . . . . . . . . . . . 23

2-3 The color of a COA frame is used to indicate the affiliation of the unit 23

2-4 Specific geometric frames are used to indicate the dimension of the unit 24

2-5 Examples of COA action symbols . . . . . . . . . . . . . . . . . . . . 25

3-1 Scribbling over one shape will delete it . . . . . . . . . . . . . . . . . 28

3-2 Scribbling over multiple shapes will delete each of the shapes . . . . . 29

3-3 The hand cursor indicates the shape being moved. . . . . . . . . . . . 29

4-1 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4-2 Pen-Input Data Classified as Line Primitive Type . . . . . . . . . . . 35

4-3 Pen-Input Data Classified as Ellipse Primitive Type . . . . . . . . . . 35

4-4 The LADDER shape definition of an arrow . . . . . . . . . . . . . . . 38

4-5 Three sketched lines which may recognized as components of complex

shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4-6 Labeled shapes that satisfy the constraints for the LADDER shape

definition of an arrow . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4-7 Relationship between a Sketched Shape and Objects stored in LAD-

DER Recognizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4-8 Relationship between a Sketched Shape and Recognized Shapes . . . 40

9



4-9 Relationship between a Sketched Shape and Recognizer Shapes . . . . 41

4-10 The frame template hierarchy for a friendly unit allows any frame to

be used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4-11 The frame template hierarchy for a friendly brigade does not allow |

or O echelon modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4-12 COA Domain Handler determines the Aggressor and Defender units

for a Penetrate Action . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4-13 COA Domain Handler determines the following unit and followed ac-

tion for a Follow and Support Action . . . . . . . . . . . . . . . . . . 48

4-14 Example COA Diagram before multimodal input . . . . . . . . . . . 50

4-15 Two sketching inputs were received during speech input - both inputs

were points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4-16 Result of using multimodal input to ”copy” a unit . . . . . . . . . . . 51

5-1 A rectangular frame that contains a gap . . . . . . . . . . . . . . . . 57

5-2 The IFR combines the filled-in line (highlighted in green) with the line

highlighted in red . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5-3 The grey line indicates the line recognized by the IFR from the input

shown in Figure 5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5-4 A dashed line can be recognized from as few as two dashes . . . . . . 59

5-5 As more dashes are recognized as part of a dashed line, the endpoints

of the dashed line update . . . . . . . . . . . . . . . . . . . . . . . . . 60

5-6 The IFR recognizes dashes arranged in a circle as a Dashed Ellipse shape. 61

6-1 Multiple Inheritance of Symbol Construction . . . . . . . . . . . . . . 65

6-2 The geometric properties of displayed images may not match with in-

put pen strokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6-3 User strokes indicating a friendly unit are replaced by a fixed-size image 70

6-4 User strokes indicating a minefield are replaced with an image scaled

to the size of the sketched minefield . . . . . . . . . . . . . . . . . . . 70

10



6-5 User strokes indicating a friendly unit are replaced by a horizontal

image, regardless of the orientation of the sketched rectangle . . . . . 71

6-6 User strokes indicating a minefield are replaced with an image at the

same orientation as the sketched strokes . . . . . . . . . . . . . . . . 72

7-1 Sketched Input to COA Design Interface . . . . . . . . . . . . . . . . 74

7-2 Displayed Output from COA Design Interface . . . . . . . . . . . . . 75

11



12



List of Tables

2.1 Echelon modifiers and their symbols . . . . . . . . . . . . . . . . . . . 25

4.1 The COA Domain Handler updates its representation of a unit as it is

modified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1 Task-Organized Icon Modifier Combinations . . . . . . . . . . . . . . 76

7.2 Summary of Recognized Shapes . . . . . . . . . . . . . . . . . . . . . 77

7.3 Recognized COA Frames . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.4 Recognized COA Echelon Modifiers of Friendly Units . . . . . . . . . 78

7.5 Recognized COA Echelon Modifiers of Enemy Units . . . . . . . . . . 79

7.6 Recognized COA Icon Symbol Modifiers of Friendly Units - 1 . . . . . 80

7.7 Recognized COA Icon Symbol Modifiers of Friendly Units - 2 . . . . . 81

7.8 Recognized COA Icon Task Organized Modifiers of Friendly Units . . 81

7.9 Recognized COA Icon Symbol Modifiers of Enemy Units . . . . . . . 82

7.10 Recognized COA Action Symbols . . . . . . . . . . . . . . . . . . . . 83

7.11 Recognized COA Object Symbols . . . . . . . . . . . . . . . . . . . . 83

13



14



Chapter 1

Introduction

Sketching is a quick and efficient method for communicating information, especially

spatial and geometric information [3]. One particularly appropriate use for sketching

is in military Course of Action diagrams. A Course of Action (COA) diagram is

created by military planners when they are formulating a battle plan. COA diagrams

consist of a collection of symbols that represent military units and the actions they

are to perform. COA diagrams are today created primarily with pencil and paper,

or on acetate overlays on maps with grease pencils, post-its, and pushpins. Many

computerized attempts at speeding up the process of COA generation have been

rejected by military users, commonly because of the awkwardness of mice and menus

for what is more naturally done by sketching [5]. An example of a basic COA sketch

is shown in Figure 1-1.

In order to make the creation of COA diagrams effortless for the user, interaction

must occur effortlessly and the interface should be invisible to the user. As suggested

by Davis in [3], interacting with a software program should feel natural, informal,

rich, and easy. If this goal is to be reached, the menu bars, drop-down menus, and

glyph bars popular in many current programs should not be a part of the sketch

interface. Instead, recognition should be the focus. A useful program in the COA

domain would be able to recognize COA symbols incrementally as they are sketched

based on the same geometric properties that humans use to interpret a sketch. An

ideal system would allow users to sketch COA diagrams just as is done on pencil and

15



Figure 1-1: Example of a basic COA sketch

paper, but the system would be able to understand the sketch. Such a system might

allow users to edit COA diagrams or simulate a battle plan from a COA diagram.

In order for a program to be able to make sense of messy, informal sketches, as

shown in Figure 1-1, the system must be knowledge-based [3]. That is, the system

should understand the geometry of the shapes in the domain. Hammond [6] has

developed a system that interprets sketches based on geometric properties of shapes

encoded with LADDER shape descriptions. LADDER is a language that can be used

to describe how sketched shapes in a domain are drawn, displayed, and edited.

The LADDER shape language can be used for recognizing COA diagrams because

it encodes information about the properties of shapes in the COA domain. Once

LADDER shape definitions for symbols in the COA domain have been written, they

can be used by a LADDER domain recognition system to recognize sketched objects.

16



I have created a program that allows a user to sketch a COA diagram graphically

and that interprets the sketch. The program utilizes LADDER shape definitions,

which are used to encode information about the geometric properties of symbols

in the COA domain. Users are able to create and edit COA symbols using pen-

based input. The program replaces sketched strokes with images of COA symbols,

producing a neatly drawn sketch from the user’s hand drawn examples. The program

I developed represents an improvement over other COA software systems because it

is able to interpret and understand a user’s sketch as it is being drawn, similar to [2]

in the mechanical engineering domain.

In addition to developing LADDER shape descriptions for the COA domain, I

developed several additional components, including the Intermediate Feature Recog-

nizer, the COA Domain Handler, and the Multimodal Recognizer. The Intermediate

Feature Recognizer (IFR) recognizes shapes of intermediate complexity, following on

results from studies on visual classification. The IFR is also used to recognize shapes

that can’t be described using LADDER shape definitions. The COA Domain Han-

dler is used to apply COA symbolic rules to the sketch recognizer, as well as provide

an interface to other systems. The multimodal recognizer combines both pen and

speech input and is used to add information to the COA diagram that can’t easily be

communicated using sketch input alone.

Chapter 2 describes background information about other COA systems, interme-

diate features, and symbols of the COA domain. Chapter 3 describes how to use

the software program that I developed. Chapter 4 describes the system architecture

for the software program. Chapter 5 explains the Intermediate Feature Recognizer,

which is used to recognize intermediate features in a sketch. Chapter 6 describes

modifications made to the LADDER system, including support for multiple inher-

itance and image replacement. Chapter 7 discusses results and shows examples of

using the system to create a COA diagram.

17



18



Chapter 2

Background

2.1 Course of Action Recognition Systems

Computerized COA systems have typically been rejected primarily because the inter-

face seemed unnatural to users. Some systems relied on a complicated user interface,

which added complexity to creating COA diagrams. For example, nuSketch Bat-

tlespace (nSB) [5] relies on a glyph bar to create units and drop-down menus for unit

properties and actions. While this avoids the problem of recognition, it also creates

a complex and inefficient interface. The glyph bar is shown in Figure 2-1. Instead

of sketching, users create symbols by clicking on the appropriate icon on the glyph

bar and adding details about the icon through the appropriate drop-down menu. In

nSB, 294 distinct friendly unit symbols and 273 distinct enemy unit symbols are rep-

resented in the glyph bar. While trying to speed up the creation of COA diagrams,

the user interface of nSB adds complexity and complicates the sketching task, making

it difficult to interact with the program.

We believe the goal should be to design software with as few restrictions as possible

on the user. As described in [1], such a system would allow the user to sketch freely,

without modifying their drawing style, yet still be able to interpret the user’s drawing

and allow the user to interact with it.

19



Figure 2-1: A complicated glyph bar found in the COA diagram program nuSketch
Battlespace [5]

2.2 Motivations for Intermediate Features in Sketch

Recognition

When a human looks at a picture or sketch, they perform object classification quickly

and easily, easily recognizing familiar objects in the picture. One of the questions

from visual processing research asks which features of objects in the picture allow

for the best classification. Ullman [8] states that human visual processing begins by

using simple local features, and then subsequently representing the image in terms of

larger and more complex features. He found that the feature size that is most optimal

for object classification is that of intermediate complexity.

20



Ullman determined that features of intermediate complexity (IC) are more infor-

mative than features that are very simple or very complex. Features of intermediate

complexity serve as building blocks of a class. Ullman states that there are two factors

which explain the superiority of intermediate-size features: specificity and relative fre-

quency. A large and complex feature can provide reliable indication of the presense of

a class, but it is not generally representative of the class as a whole; new examples in

the class would likely not match with the large feature. Therefore, large and complex

features may be too specific and too infrequent to classify objects in the class. Small

and primitive features have a much higher likelihood of occuring, but their presense

is also more likely to occur outside of the class as well. Therefore, small and primitive

features may be too general and occur too frequently to be an indicator for a specific

class of objects. Features of intermediate complexity are more likely to generalize

broadly across a class of objects, but they are also complex enough to occur rarely

outside the class of objects.

While Ullman’s research showed that intermediate complexity features contain

the most information, it is also important to identify what information they contain.

According to Ullman, the features of a common classification can be represented

in terms of simpler fragments. These fragments combine together hierarchically to

produce an intermediate feature based on low level features. Consider features used

in identifying a human face. An intermediate feature might cover the nose and mouth

region. One low-level feature that is part of the intermediate complexity feature is a

vertical region indicating a nose. Another low-level feature is two horizontal regions

that are stacked indicating lips. The entire intermediate complexity feature consists

of the two simpler features and their arrangement - a nose feature vertically centered

above a mouth feature. Intermediate features with this type of representation were

shown to perform better in visual classification of images than both larger and smaller

features. The important thing to note is that intermediate features are described in

terms of the primitive features of which they’re composed and the primitive features’

arrangement within the intermediate complexity feature.

The research conducted by Ullman was performed using images. Intermediate

21



features are relevant to sketch recognition because a sketching environment contains

several sources of noise. One main source of noise in a pen-based environment is

the users. The system can identify where the pen is on the screen more finely than

the user can control it. If the user attempted to draw a perfectly straight line,

the system would easily be able to identify waves, fluctuations, and jitters in the line

produced by the user. A somewhat smaller source of noise in a sketching environment

is the precise location of the pen tip on the screen. The head of the pen is larger

than the location of the pen capture by the system. The precise location that the

user intended is somewhat obscured by the size of the pen head. This doesnt cause

recognition problems for users, since this detail is on a very small scale, and in many

cases may not even be perceivable. Another source of noise results from the informal

nature of the sketching environment. Often, users do not try to draw precise shapes

in a sketch. Drawing two perpendicular lines that share an endpoint is very difficult,

since the lines must be have precisely a 90 angle and must be precisely coincident.

Since a sketching environment is not precise, this source of noise is quite common. A

system that recognizes objects in sketches needs to be able to deal with these sources

of noise, to determine the users’ intent for object recognition.

Intermediate features can be used to recognize shapes even when a sketch is infor-

mal. Current systems begin this process by stroke segmentation and primitive object

detection. However, these methods still are dependent on individual pen strokes, so

they may not capture the features of a sketch at an intermediate level. Some common

examples of shapes that aren’t able to be recognized using this system are dashed

lines, filled-in lines, and multi-segment lines. These shapes could be recognized us-

ing an intermediate feature recognizer, which would combine structural details of

primitive objects to recognize higher-level shapes.

2.3 Course of Action Symbols

The United States military has created a symbolic language to visually represent

various aspects of military operations, as described in [4]. Symbols can be constructed

22



to represent a variety of military units, equipment, control measures, installations,

and operations. Military commanders and their staffs use these symbols to create

situation maps, overlays, and annotated aerial photographs for all types of military

operations. These diagrams are known as Course of Action diagrams. Course of

Action (COA) diagrams represent operational plans and orders, as well as known

locations of friendly, hostile, and neutral units and installations. A single graphical

display of symbols can describe an entire operational picture.

There is a corresponding doctrinal meaning for each graphical symbol in the lan-

guage, which is standardized across all branches of the military. Symbols represent-

ing units contain detailed information about various aspects of the unit including its

strength, size, branch, affiliation, dimension, and composition. Operation symbols

represent tasks to be performed. Because the symbolic language is standardized,

operational information can be passed quickly between military units.

Figure 2-2: An example of a COA symbol

Each military symbol that represents a unit in the COA domain can be constructed

from a frame. Additional information about the unit is represented by text modifiers,

graphic modifiers, and the color of the unit frame. In the symbolic language, frames

Figure 2-3: The color of a COA frame is used to indicate the affiliation of the unit

23



Figure 2-4: Specific geometric frames are used to indicate the dimension of the unit

are the geometric border of the symbol. The frame serves as the base of a symbol to

which additional modifiers can be added. In addition, the frame conveys information

corresponding to the affiliation, dimension, and status of a unit.

• Affiliation - The frame of a symbol conveys information about the affiliation of

the symbol. This is conveyed by the geometric structure of the frame. Each

affiliation also has a corresponding color, so friendly and hostile units can be

clearly distinguished in a course of action diagram. Figure 2-3a shows a friendly

unit (colored blue) and Figure 2-3b shows an enemy unit (colored red).

• Dimension - The frame conveys whether the symbol is used to represent a

land, sea surface, sub surface, air and space, or unknown dimension. Three

dimensions of an enemy unit - land, sub-surface, and air - are shown in Figure 2-

4 a, b, and c, respectively.

• Status - The frame also indicates the status of a symbol. Frames composed of

solid lines indicate the present location of a unit. If the frame is composed of

dashed lines, it represents the pending or suspected location of a unit.

The symbol icon can be drawn inside of the frame, to express the function and role

of the unit represented. Text and graphic modifiers can be added to specific locations

of the frame to represent additional details about the unit. One such modifier that

can be added is the echelon, which is centered directly above the frame. Some echelon

symbols and their meaning are shown in table 2.1.

In addition to symbols representing military units, which are constructed by

frames and frame modifiers, there are also symbols that represent military actions.

24



Squad •
Section ••
Platoon • • •

Company |
Battalion ||
Regiment |||
Brigade ×
Division ××
Corps ×××

Table 2.1: Echelon modifiers and their symbols

Figure 2-5: Examples of COA action symbols

Figure 2-5 shows examples of action symbols in the COA domain: Figure 2-5a is a fix

action and Figure 2-5b is a penetrate action. Often, action symbols express battlefield

tactics and indicate what operations a unit is to perform. These action symbols are

especially useful when planning a battle because there is a corresponding doctrinal

meaning as to what action a military unit should take in a battle.

25



26



Chapter 3

System Usage

This chapter describes the program I developed that can be used to develop a COA

diagram. Users provide information about the operational picture through sketching

or a combination of sketching and speech input. The program provides feedback to

the user by transforming pen strokes into formal COA symbols.

3.1 Sketching

Sketching is the primary method of input to the COA design interface. Sketch input

can be divided into two types of pen strokes - those used to create shapes and those

used to edit shapes.

3.1.1 Creating shapes

The shapes displayed in Chapter 7 can be recognized by the software program. Shapes

are recognized based on their geometric properties, so the user can draw strokes in

any order and at any scale. Once a shape has been recognized, it is replaced by the

image representing the COA shape. This gives feedback to the user about whether

their most recent sketched input was interpreted correctly. If the sketch was not

interpreted correctly, this gives the user the option to fix the symbol or delete it.

27



Figure 3-1: Scribbling over one shape will delete it

3.1.2 Editing symbols

Users can also edit the diagram: symbols can be deleted, moved, and copied using

editing pen strokes.

Deletion

If the user determines that an object is not recognized correctly, they can erase all

of the object, then redraw it. This allows the user to correct errors made by the

recognition system: shapes can be deleted by scribbling over them. After a scribble

pen stroke is completed, any shapes that have been scribbled over are removed from

the drawing panel, and the scribble pen-stroke disappears from the drawing panel.

Figure 3-1 shows an example of a scribble stroke, shown in green over the red unit

indicating an enemy infantry batallion. A single scribble can delete multiple shapes,

as shown in Figure 3-2. In this example, a scribble (shown in green) is drawn over

a minefield (shown in black) and a friendly mechanized artillery brigade (shown in

blue). The scribble deletes both the minefield and friendly unit.

Moving

To move shapes, the user touches the pen to the screen over the shape for about half

a second, after which the cursor changes to a hand (Figure 3-3). Once the cursor has

changed, the pen tip may be moved around the drawing panel and any shapes located

28



Figure 3-2: Scribbling over multiple shapes will delete each of the shapes

Figure 3-3: The hand cursor indicates the shape being moved.

directly beneath the cursor follow. In Figure 3-3, moving the pen around will cause

the enemy unit to follow.

3.2 Multimodal Input

The user may also interact using a combination of sketching and speech. Speech

interaction allows the user to communicate information to the system that may be

difficult or impossible to communicate through pen-based interaction. To use speech

input, the user touches the pen-tip to the “Talk” button to indicate the beginning

and end of speech input.

29



3.2.1 Symbol Naming

Certain symbols in the COA domain can be named through the COA Design Interface

using multimodal interaction. Currently, only “Objective” areas can be named. In

order to assign a name to an area, the user follows the commands listed below.

1. Press “Talk” button.

2. Say “This is <symbol-name>” while clicking once on screen (to indicate the
object to be named), where <symbol-name> is the name of the symbol.

3. Press “Talk” button.

3.2.2 Editing Shapes

The editing capabilities of multimodal interaction are also possible through pen-based

interaction, but both options are available and it is up to the user to decide which

form of interaction feels more natural.

Move/Copy (Option 1):

1. Press “Talk” button.

2. Say “Copy [Move] this unit [object] here” while clicking twice on screen, once to
indicate location of object to be moved [copied] and a second time to indicate
the new location of the object.

3. Press “Talk” button.

Move/Copy (Option 2):

1. Select item on screen with pen-input.

2. Press “Talk” button.

3. Say “Copy [Move] selected unit [object] here” while clicking once on screen (to
indicate new location of object).

4. Press “Talk” button.

30



Delete (Option 1):

1. Press “Talk” button.

2. Say “Delete this unit [object]” while clicking once on screen (to indicate location
of object to be deleted).

3. Press “Talk” button.

Delete (Option 2):

1. Select item on screen with pen-input.

2. Press “Talk” button.

3. Say “Delete selected unit [object]”.

4. Press “Talk” button.

31



32



Chapter 4

System Architecture

There are three main components of the COA interface: the sketch recognizer, the

COA Domain Handler, and the COA Multimodal Recognizer. The sketch recognizer

is capable of recognizing sketched shapes in the COA domain. The COA symbol

domain is compositional - multiple modifiers can be added to symbols. The COA

Domain Handler ensures that only valid combinations of modifiers are recognized by

the sketch recognizer. The COA Domain Handler also provides an interface to other

systems. The COA Multimodal Recognizer combines pen and speech input, allowing

the system to receive details through voice input that might not be easily sketched.

4.1 Sketch Recognizer

The sketch recognizer consists of three components, the Primitive Recognizer, the

Intermediate Feature Recognizer, and the Domain (LADDER) Recognizer. As pen-

input data is captured by the computer, it is passed to the primitive recognizer, which

analyzes and classifies individual pen-strokes as lines, ellipses, points, polylines, and

scribbles. Once an initial classification of these strokes has been completed, primi-

tive objects representing lines, ellipses, etc. are passed to the Intermediate Feature

Recognizer and Domain Recognizer. The Intermediate Feature Recognizer is used to

recognize shapes of intermediate complexity that are drawn with one or more strokes.

Recognized shapes from both the Primitive Recognizer and the Intermediate Feature

33



Figure 4-1: System Components

Recognizer are combined in the Domain Recognizer in order to recognize complex

shapes in the domain. Figure 4-1 shows the architecture for system components.

4.1.1 Primitive Recognizer

Pen data collected from the hardware contains information about the vertical and

horizontal position of the pen-tip on the screen, as well as the pressure of the pen-tip

on the screen, and the time the input was detected. Each time the pen touches the

screen and is removed is referred to as a pen stroke. Each pen stroke consists of one

or more points.

The primitive recognizers determine whether the pen stroke can be classified as

an ellipse, line, point, polyline, or scribble. There is an independent classifier for

each type of primitive. If the classifier determines that the stroke can be classified

as one of these primitives, a primitive object of that type is created and passed to

the domain shape recognizer. Figure 4-2 shows a sequence of points collected by the

pen-hardware have been classified as a line and are displayed by the system as a

line. Figure 4-3 shows a pen stroke and its resulting classification and display by

the system as an ellipse primitive shape. Once a primitive object is recognized, only

important reference points are kept. For example, only the endpoints of a line are

kept, while the input points used to classify the line are discarded.

It is possible for a single stroke to be classified as multiple primitives, provided the

34



Figure 4-2: Pen-Input Data Classified as Line Primitive Type

Figure 4-3: Pen-Input Data Classified as Ellipse Primitive Type

35



pen stroke meets the geometric requirements for each primitive shape. In that case

multiple primitive objects for a single pen stroke are created and sent to the domain

recognizer.

Each primitive object created when a pen stroke is classified contains details about

the features of the sketched shape. In the case of an ellipse, the ellipse object contains

details about the height, width, and center of the ellipse. A line object would include

coordinates for each endpoint of the line, as well as its length and slope. The features

associated with each primitive type are used in recognition of domain shapes, and

this data is also sent to the domain recognizer when a primitive object is created.

Each recognized shape in the system contains information about which subcom-

ponents the shape is composed of. For primitive objects, the subcomponent is the

stroke. As noted earlier, each stroke is analyzed by all primitive recognizers and mul-

tiple primitive classifications of a stroke are allowed. Therefore, a single stroke may

be classified as multiple primitive types, resulting in several primitive objects being

created and sent to the Domain Shape recognizer. However, the domain shape recog-

nizer allows only one of these pen stroke interpretations to be used as a component

of more complex shapes. Each pen stroke has a unique ID value, and each value may

be used to form at most one other domain shape.

The ellipse, line, point, polyline, and scribble primitive classifiers are used to

interpret a single pen stroke. The polyline recognizer is used to segment a stroke

into line components. Segmentation is determined by using speed and curvature data

obtained by analyzing the pen stroke, as in [7]. The resulting line segments of the

polyline are created as line primitives and sent to the domain shape recognizer.

4.1.2 Intermediate Feature Recognizer

The intermediate feature recognizer analyzes the primitive objects created by the

Primitive Recognizer. If there is a collection of these primitive objects that form a

shape of intermediate complexity, this information is passed to the domain shape rec-

ognizer. Therefore, there can be multiple interpretations of a single pen-stroke: (1)

the low-level classification provided by the primitive recognizers, and (2) the interme-

36



diate complexity feature(s) the stroke is part of. While the primitive shape recognizer

recognizes primitive objects with a single stroke (low-complexity objects), the inter-

mediate feature recognizer can detect shapes of intermediate complexity based on

their geometric properties. The result of the intermediate feature recognizer is an al-

ternate interpretation of a collection of single-stroke primitive objects. This collection

is input to the domain shape recognizer.

Recognizing shapes of intermediate complexity can have several benefits to the

system. The intermediate complexity shape recognized by the intermediate shape

recognizer may allow automatic correction of some stroke segmentation errors, and

the ability to recognize filled-in and multi-segment lines. While the domain shape rec-

ognizer may receive possible interpretations of a single stroke from both the primitive

shape recognizer and the intermediate feature recognizer, only a single final interpre-

tation is chosen based on which other shapes have been drawn. The Intermediate

Feature Recognizer is discussed in more detail in Chapter 5.

4.1.3 Domain Recognizer

Using the LADDER shape definition builder, a LADDER shape definition was created

for each symbol in the COA domain. The LADDER shape definition describes how

a given shape should be recognized, displayed, and edited in the Domain Recognizer.

Each LADDER shape definition contains a list of components of the shape being

defined and a list of constraints that must be satisfied among the components. The

task of the domain recognizer is to “recognize” shapes that have been sketched.

The collection of recognized shapes is stored in the Visible Shape Collection (VSC).

Whenever a shape is added to the VSC, the domain recognizer checks to see if it can

combine with other shapes in the VSC to produce a more comlex shape. A shape is

“recognized” by the domain recognizer if: (1) all of the components in its LADDER

shape description are in the VSC, and (2) all of the constraints listed in the LADDER

shape description for the shape are satisfied by the components. Once a shape is

recognized by the domain recognizer, all of its components are removed from the

VSC and replaced by the recognized shape.

37



Figure 4-4: The LADDER shape definition of an arrow

Figure 4-5: Three sketched lines which may recognized as components of complex
shapes

An example of a LADDER shape definition, the definition of an arrow shape,

is shown in Figure 4-4. There are three required components of the shape and six

contraints that must be met for an arrow to be recognized. Figure 4-5 shows three

lines that have been added to the VSC. Each of the three shapes in the VSC is a line,

which satisfy the components necessary to form an Arrow. The Domain Recognizer

attempts to pair LADDER components with shapes in the VSC. In this case, there

is one pairing that will allow the constraints of the LADDER arrow definition to be

met, shown in Figure 4-6. The new shape, an arrow is added to the VSC, and its

components (the three lines) are removed from the VSC.

The LADDER shape definition and recognition system is hierarchical. The most

primitive shapes are those shapes sent to the domain recognizer from the primitive

recognizer. Primitive shapes and other domain shapes may combine to form more

complex domain shapes, as described in LADDER shape definitions. Recognition

is incremental - the entire COA diagram does not need to be sketched - only those

38



Figure 4-6: Labeled shapes that satisfy the constraints for the LADDER shape defi-
nition of an arrow

components of the shape being recognized. This is particularly appropriate for the

Course of Action domain because many of the symbols can be described hierarchically.

4.2 COA Domain Handler

The COA Domain Handler has two main functions: (1) assist the sketch recognizer

in following rules for constructing symbols in the Course of Action domain, and (2)

“interpret” the sketch and provide an interface from the sketch recognizer to other

systems.

4.2.1 Apply COA symbolic rules to Sketch Recognizer

The first function of the COA Domain Handler is to restrict recognition of some

shapes by the sketch recognizer to follow the rules of drawing symbols in the COA

domain. This is also closely related to the issue of multiple inheritance of COA shapes

(see Section 6.1). As is discussed in Section 6.1 on multiple inheritance, each modifier

is recognized in the context of the frame of a unit. A COA symbol may have many

modifiers, but only is allowed one of each type of modifier. The following example

demonstrates how the sketch recognizer can correctly recognize multiple modifiers for

a unit, but when combined make the COA symbol invalid.

Once the frame has been sketched and recognized, the representation for the

unit frame remains in the visible shape collection and can be combined with other

shapes. Because the frame is in the VSC, modifiers can be added to the frame.

As shown in Figure 4-7, a company modifier and an infantry modifier have been

added to the frame for the unit. For the single COA symbol, the VSC contains

39



Figure 4-7: Relationship between a Sketched Shape and Objects stored in LADDER
Recognizer

Figure 4-8: Relationship between a Sketched Shape and Recognized Shapes

three recognized LADDER shapes: the unit frame, the echelon modifier, and the icon

modifier. Because these LADDER shape representations remain in the VSC, they

can each be modified further. The echelon modifier (a company) can combine with

another company symbol to create a batallion echelon modifier. The icon modifier

(infantry) can be modified by adding an ellipse in the center of the frame indicating

that the unit is armor. The armor and infantry symbol together are recognized as

a mechanized infantry unit. In addition, the unit frame can be modified by adding

additional modifiers (although the frame will remain in the VSC).

The following example shows a problem that might arise with allowing the frame

to remain in the VSC. In Figure 4-8, the symbol for a friendly company has been

drawn. The VSC contains two shapes after recognition of the shape in Figure 4-8:

an echelon modifier (a company), which can be used to recognize a batallion, and

40



Figure 4-9: Relationship between a Sketched Shape and Recognizer Shapes

the frame itself. The frame remains in the VSC to allow recognition of additional

modifiers to the frame. Figure 4-9 demonstrates a situation that may occur if the

user then mistakenly decides to draw a brigade echelon modifier on the same frame.

Because the frame remains in the recognizer, the sketched brigade modifier (“X”)

can be combined with the frame to produce a friendly brigade because the necessary

components and geometric constraints for the friendly brigade symbol are met. Both

echelon modifiers - the company and the brigade - are valid in the context of the

frame of a unit. However, according to the symbolic language for COA symbols, each

frame may have at most one echelon modifier, hence the symbol shown in Figure 4-9

is not valid.

We use frame templates to solve this problem. Frame templates serve as a gram-

mar to enforce the rules of constructing COA shapes. Instead of recognizing the

modifier in the context of a frame, modifiers are recognized in the context of frame

templates. Unit modifiers are recognized in the sketch only if the frame template ex-

ists in the VSC that corresponds to the unit modifier. The COA Domain Handler is

responsible for adding and removing the frame templates from the sketch recognizer

to enforce COA symbol composition rules. The use of frame templates allows the

restriction of recognition of shapes to follow the COA symbolic language. All shape

definitions for unit modifiers reference a specific template for a frame rather than the

unit frame itself.

The frame template hierarchy for a friendly unit is shown in Figure 4-10. There are

two types of templates - echelon and icon. There are three echelon templates (|, X, and

41



Figure 4-10: The frame template hierarchy for a friendly unit allows any frame to be
used

O) and two icon templates (drawn and subunit). Examples of modifiers that use each

of these templates is shown in Figure 4-10. When a modifier is recognized, the frame

template hierarchy may change. Figure 4-11 shows the frame template hierarchy for

a friendly brigade. Figure 4-11 shows that the | and O echelon templates have been

removed, while leaving the icon templates unaffected. Additional X modifiers and

either icon modifier can be recognized for the symbol, but | and O echelon modifiers

are not recognized. When a template of one type has been recognized, the other

templates for that type are removed from the recognizer. However, templates for

different frame modifiers are unaffected. This approach allows frame modifiers to be

sketched in any order, while restricting recognition by the sketch recognizer to follow

the course of action symbolic language.

By adding and removing frame templates from the VSC, the COA Domain Handler

influences which modifiers may be recognized, which enforces COA symbol composi-

tion rules. Frame templates are added to the VSC whenever a frame is recognized by

42



Figure 4-11: The frame template hierarchy for a friendly brigade does not allow | or
O echelon modifiers

43



the sketch recognizer (as specified by the template grammar), which allows recognition

of frame modifiers. Frame templates are deleted from the VSC when frame modifiers

are recognized (as specified by the template grammar). The template grammar is

used to specify which templates are added and deleted by the VSC.

As shown in Table 2.1, echelon modifiers consist of either “|”, “X”, or “O” symbols,

but these symbols are never mixed. There are three possible echelon templates -

the “|” template, the “X” template, and the “O” template. These three templates

represent the three base shapes for echelon modifiers. Adding the first “|”, “X”, or

“O” of an echelon modifier to a unit frame will cause the COA Domain Handler to

remove the two unused echelon modifiers. The “|” template can be used to form

company, battalion, and regiment symbols, the “X” template can be used to form

brigade, division, and corps symbols, and the “O” template can be used to form

squad, section, and platoon symbols. Once the first echelon modifier is added to a

symbol (|, X, or O), recognition of additional echelon modifiers to the same frame are

restricted to those of the same type (|, X, or O), as shown in Figure 4-10.

There are two icon templates available for friendly units (drawn symbol and task-

organized subunit) and one for enemy units (drawn symbol). The icon modifier of

a frame represents information about the function of the unit and can be drawn

for both friendly and enemy units. For friendly units, the function of a unit can

alternately be displayed using a task-organized icon. The icons in a task-organized

icon give additional information about the composition of the unit. Symbols for a

task-organized icon modifier and a icon symbol can’t be combined in the same frame

according to rules for creating COA symbols. Therefore, once an icon modifier has

been recognized that is either a task-organized icon modifier or a icon symbol, the

other icon template is removed from the recognizer. This allows recognition to be

restricted to one of the two types of icon modifiers after the first icon modifier for a

frame has been recognized.

The system currently handles two types of modifiers (echelon and icon), although

it can easily be extended to handle additional types of modifiers.

44



COA Symbol:
Affiliation: Friendly Friendly Friendly Friendly Friendly
Echelon: Unknown Company Company Battalion Battalion
Function(s): Unknown Unknown Infantry Infantry Mechanized Infantry

Table 4.1: The COA Domain Handler updates its representation of a unit as it is
modified.

4.2.2 Interface

The COA Domain Handler is an interface between the sketch recognizer and other

systems. It “interprets” the sketch: combining modifiers that describe each unit

and determining relationships betweeen sketched symbols that accurately describe

the operational picture. The data transmitted from the the sketch recognizer to the

COA Domain Handler consists of unit frames, individual modifiers to these frames

and individual action symbols in the COA domain. In order to avoid issues dealing

with the large number of possible shape combinations in the COA domain, the shape

recognizer does not combine different types of modifiers together nor does it asso-

ciate actions with the units involved. These tasks of relating sketched symbols are

performed by the COA Domain Handler.

When COA symbols representing unit modifiers have been recognized by the

sketch recognizer, the COA Domain Handler updates its internal representation of

that unit. The internal representation for COA symbols is an XML format developed

by Draper Laboratory. The information encoded for each unit includes the unit’s

strength, possible subunits, functions, and location. Action details include which

units are involved in the action and the status of the action. While the locations of

units are single points, the locations of minefields and objectives are areas, represented

by a series of points representing the boundary of the region.

45



Units

Each COA symbol for a unit is represented by multiple objects in the VSC - the frame

and any modifiers of that frame. The COA Domain Handler has one representation

for each unit, regardless of the number of modifiers, and updates this representation

as new modifiers are recognized and added to the VSC. As shown in Table 4.1, the

COA Domain Handler updates information about a unit as modifiers are added to a

COA unit symbol.

Information about a single unit comes from all the sketched objects that share the

same frame. However, determining which units are involved in which actions must be

done by other means. When COA symbols representing actions have been recognized,

the COA Handler analyzes the geometry of the sketch to determine which units are

involved in the action.

Aggressor/Defender Actions

Some actions consist of an aggressor and a defender, examples of which are the “Pen-

etrate” and “Fix” actions. For these actions, the sketched shape often consists of an

arrow-like shape. The shape of the arrow shaft may differ (to differentiate between

actions), but the common properties are that the aggressor and defender can be de-

termined based on the position of the tail of the shaft, the position of the head of the

shaft, and the direction the arrow is pointing. A common LADDER shape definition

of “tail” and “head” are used in all shape descriptions for actions of the type aggres-

sor/defender. This allows the COA Domain Handler to locate the endpoints of the

arrow and determine the direction the arrow is pointing. The COA Domain Handler

has access to all recognized units and their location in the frame. Using the location

of the referenced points for “head” and “tail” in the sketched shape, the COA Domain

Handler determines the likely aggressor and defender based on the angle of the arrow

shaft, the location of these points, and the location of all sketched units.

Figure 4-12 shows a COA diagram with four units (labeled 1-4) and a penetrate

action, with the head and tail of the shaft labeled. The points at the head and tail

46



Figure 4-12: COA Domain Handler determines the Aggressor and Defender units for
a Penetrate Action

are used to determine which direction the arrow is pointing. The unit nearest the

head location and most directly in the path of a ray from the tail extending through

the head is called the defender. This is unit “2” in Figure 4-12. The aggressor is

the unit nearest the tail location and most directly in the path of a ray from the

head extending through the tail (in Figure 4-12, unit “3”). The internal model of the

aggressor/defender action is updated to refer to the detected aggressor and defender

units.

Follower/Followed Actions

The COA Domain also contains actions which indicate that a unit should follow an-

other tactical operation, such as the “Follow and Assume” and “Follow and Support”

actions. These actions contain a base symbol (indicating the type of action and be-

ginning location of the action), as well as a path which indicates related actions. The

LADDER shape description for these shapes similarly indicates a base shape and a

dashed or solid line called a “path”. The line indicating the path of the action may

contain multiple segments or waypoints. For “Follow and...” actions, the system se-

lects as the action to be followed the action that is the shortest distance from the

“path”. The unit doing the following is determined by the closest unit to the base

of the “Follow and ...” Action. Once the COA Handler has been determined the

related follower unit and followed action, the internal model is updated to refer to

the follower unit and followed action.

Figure 4-13 shows a COA diagram with six units (labeled 1-6) and three actions

47



Figure 4-13: COA Domain Handler determines the following unit and followed action
for a Follow and Support Action

(a fix action, a penetrate action, and a follow and support action). The base of

the follow and support action is labeled - the closest unit to the base (not already

assigned to an action) is considered the follower unit of the action. The path of the

follow and support is indicated by a dashed line in the diagram. Unlike the aggressor

and defender actions, the path may have several waypoints, indicating a change in

direction. The followed action is the action that lies closest to the path of the follow

and support action, in this case the fix action. The COA Handler updates its internal

model of the action to reference the follower (unit “2”) and the folled action (the fix

action).

4.3 Multimodal Recognizer

The multimodal recognizer is used to combine pen-input and speech-input. Sec-

tion 3.2 explained some of the capabilities of multimodal input. This section focuses

on how the speech signal is processed and combined with pen input.

4.3.1 Speech Input

Speech input to the system is a sequence of acoustical signals. These signals must

be processed to determine the proper response from speech input from the user.

Acoustical signals are processed using the SUMMIT speech recognition system, first

described in [9]. This system was designed by the Spoken Language Systems Group

48



at the MIT Computer Science and Artificial Intelligence Laboratory. In the SUMMIT

system, segments of the audio signal are matched against a library of small units of

sound called phonemes. The sequence of matches is used to produce a model of which

word parts have been spoken. Humans often rely on the context of audio fragments

and their own understanding of language in order to clarify speech and the SUMMIT

system does as well. As part of this project, a language model for the COA Domain

was developed. The COA language model and model of spoken phonemes are used

to generate an n-best list of candidate sentences, each of which is accompanied by a

score. This n-best list is the output of the SUMMIT system for a given sequence of

acoustical signals.

4.3.2 Combining Speech and Pen Input

When there is input from multiple modalities, the COA Multimodal Recognizer com-

bines the output from the sketch recognizer and the SUMMIT Speech system to

determine the user’s intent. The output from the speech recognizer, an n-best list of

candidate sentences, and the output from the sketch recognizer, one or more sketched

shapes, are compared by the COA Multimodal Recognizer to determine which actions

to perform.

Different parts of recognized speech can be associated with a particular “tag”.

Each candidate sentence in the n-best list consists of one or more tags. The speech

input is mostly command based, so command tags are of the form “command-type”,

where type refers to the type of command the user wishes the system to perform. Each

type of command tag is associated with an expected input from the sketch recognizer.

The expected input is a type of shape (or shapes) depending on how many inputs

are expected for a given command. For example, the expected input for the move

operation is a point (to select the new location of a symbol). If the expected type

of input from the sketch recognizer matches with the given command of the n-best

list, then the command is processed based on the input stroke. If the expected type

of input from the sketch recognizer does not match the speech command, then the

system doesn’t do anything in response to the speech input.

49



Figure 4-14: Example COA Diagram before multimodal input

The following example demonstrates the process of combining speech and pen

input. Figure 4-14 shows the sketched shapes at the beginning of the multimodal

input command. After the user presses the “Talk” button to indicate speech input,

the multimodal input begins. The user states “Copy this shape here.” At the same

time, two pen strokes are received by the sketch recognizer (which are both classified as

points), shown in Figure 4-15. The user presses the “Talk” button again to indicate

the completion of multimodal interaction. After processing the speech input, the

SUMMIT system sends the multimodal recognizer the tag “command-copy”. This

is used to indicate that the user wishes to copy a shape. The expected input for a

command-copy tag from the sketch recognizer is two points (to indicate the existing

shape to copy and the new location) or one point (if a shape is already selected, the

single point indicates the location of the selected shape to be copied to). The input

from the speech matches the expected input from the sketch recognizer. As a result,

the system copies the shape located at point 1 to the location at point 2. Figure 4-16

shows the result of this multimodal interaction with the system.

50



Figure 4-15: Two sketching inputs were received during speech input - both inputs
were points

Figure 4-16: Result of using multimodal input to ”copy” a unit

51



52



Chapter 5

Intermediate Feature Recognizer

The Intermediate Feature Recognizer (IFR) is used to recognize shapes of interme-

diate complexity. Recognizing shapes that have intermediate complexity improves

sketch recognition in the COA domain. One purpose of the IFR is shape detection; it

is able to recognize certain shapes of intermediate complexity that can’t be detected

by either the primitive recognizer or the domain recognizer. A second purpose of

the IFR is error correction; it can correct errors caused by either incorrect system

recognition or the user.

The benefits of the Intermediate Feature Recognizer are summarized below:

• Shape Detection

– Recognizes variably-drawn shapes of intermediate complexity.

• Error Correction

– Correct some initial stroke segmentation errors

– Correct errors dealing with over-tracing and filled-in lines.

5.1 Limitations of LADDER System

Recognition in the LADDER System proceeds in a bottom-up as primitive shapes

combine to form domain shapes. Domain shapes can combine with other domain

53



shapes or primitive shapes to form more complex domain shapes. One problem with

the LADDER method of shape definitions is that the description of a shape specifies

a specific number and type of components. Shapes with a variable number of com-

ponents are not able to be recognized, since the LADDER shape description must

specify the specific number of components.

The LADDER method of shape definitions is not able to deal with filled-in lines

and multi-segment lines. If a user drew a line with one stroke, and then tried to extend

the line with another stroke, the system recognizes these strokes as two separate pen-

strokes, each of which are classified as a line. The desired system response would

be to combine the two lines together to create a single line encompassing the space

covered by both lines. While it might appear visually as if a single line was drawn

using the pen, using two strokes will create two separate lines that are added to

the domain recognizer. Any domain shape that depends on the extended line will

not be recognized because the domain shape recognizer is only aware of two lines,

each of which are part of the extended line. Therefore, common user errors such as

filled-in lines and multi-segment lines won’t be recognized by the LADDER domain

recognizer.

5.2 Shape Detection using the Intermediate Fea-

ture Recognizer

One of the two primary purposes of the Intermediate Feature Recognizer is to be able

to detect shapes of intermediate complexity. A shape of intermediate complexity is

one that can’t be detected by either the primitive recognizer or the domain recognizer.

Primitive recognizers process shapes drawn with a single pen-stroke. The domain

shape recognizer requires a fixed number of components for each defined domain

shape. The intermediate feature recognizer fills the gap in shape detection between

the primitive recognizer and the domain recognizer, detecting shapes drawn with

more than one stroke as well as detecting variably-drawn shapes.

54



Intermediate feature recognition is particularly useful to the COA domain because

there are several COA domain symbols which can’t be described using LADDER

shape descriptions. Some examples are dashed frames (which represent pending or

suspected location of units) and dashed ellipses (which can be used to represent a

seize action.) These features can’t be recognized by either the primitive recognizer

(because they are drawn with more than one stroke) or the domain recognizer (because

they are variably drawn), but they can be recognized using the intermediate feature

recognizer.

A LADDER shape description can not be written for a dashed line because the

number of dashes can vary. Creating a domain shape description for a variably-

drawn shape is not possible since a specific number of component shapes and their

type must be specified in LADDER. The intermediate feature recognizer does not

have this same requirement - dashed lines are recognized if they contain two or more

dashes. There is not a specific number of dashes required for a dashed line. Using

the dashed line intermediate feature, LADDER definitions can be written for dashed

frames for friendly and enemy units.

5.3 Error Correction using the Intermediate Fea-

ture Recognizer

Another purpose of the intermediate feature recognizer is to correct errors in shape

recognition. One possible source of error can result from incorrect stroke segmentation

by the primitive recognizers. Another source of error is the user, who might make a

mistake and then try to correct it. Several examples of user error are filled-in lines

and multi-segment lines, both of which can be corrected by the intermediate feature

recognizer.

55



5.3.1 Correcting initial stroke segmentation errors

Incorrect stroke segmentation is a limitation of the current LADDER system. If a

user draws a pen-stroke that is recognized as a polyline, the system segments the

stroke at each of the segmentation points indicated by the polyline classifier. Then

the IFR sends the domain shape recognizer line objects corresponding to the pen

stroke between each pair of consecutive segmentation points. Bottom-up recognition

occurs using the initial set of line segments. If the initial segmentation of the polyline

was wrong, the user must erase the line segments and redraw them.

The IFR analyzes each of the line segments that were created to determine if any

of them can be combined to form a single line segment. In order to be combined, line

segments must have similar slope and be collinear, with little or no space between

the line segments. If it is determined that two line segments may be combined to

form a single line, then the new line (extended) is added to the domain recognizer,

with the line segments that it is composed of defined as its sub-shapes. In this way,

multiple interpretations of the segmentation are produced and added to the domain

recognizer.

The domain shape recognizer requires that there is only one final interpretation

of the segmentation of a stroke, because each segment is identified by a unique ID,

and a unique ID may be recognized only once as part of a domain shape. The final

interpretation of the pen stroke may not be known until more shapes are drawn

on the screen. If the primitive polyline classifier segments the stroke in too many

locations, the final object may not be recognized by the domain recognizer. The IFR

solves this problem by combining line segments together if they meet certain geometric

constraints. Not only does the initial segmentation get analyzed by the domain shape

recognizer, additional segmentations produced by the intermediate feature recognizer

are also produced and analyzed. The initial segmentation is produced by primitive

recognizers and complemented by segmentations produced by the IFR. The IFR helps

to improve domain shape recognition by providing alternate stroke segmentations to

the domain shape recognizer.

56



Figure 5-1: A rectangular frame that contains a gap

Figure 5-2: The IFR combines the filled-in line (highlighted in green) with the line
highlighted in red

Figure 5-3: The grey line indicates the line recognized by the IFR from the input
shown in Figure 5-2

57



5.3.2 Correcting filled-in lines and multi-segment lines

Each pen stroke produces one or more recognized primitive shapes. Consider a rect-

angular shape with a gap in the frame, as shown in Figure 5-1. If the user draws a

pen-stroke to fill in the gap, a separate primitive line object is created for the filled-in

portion. The IFR combines line objects that have a similar slope and are collinear,

as it did to correct segmentation errors. The IFR combines the line object for the

filled-in section (highlighted in green in Figure 5-2) The IFR creates a new line ob-

ject (highlighted in grey in Figure 5-3 that encompasses both the original line and

the filled-in portion.

In a similar manner, the IFR system can deal with multi-segment lines. Lines that

are collinear, have the same slope, and cover the same area can combine to form a

new line object that encompasses the over-traced portion and extends to the furthest

endpoints of each of its component line segments. This is slightly different than the

recognition of filled-in lines, which requires that the lines being combined share one

endpoint.

5.4 Recognition of Intermediate Features

5.4.1 Dashed lines

Dashed lines are recognized by the intermediate feature recognizer. Three constraints

are used to recognize a dashed-line: slope, collinearity, and coverage. As each new

line segment is added to the IFR, it is analyzed to determine if it has a similar slope to

other lines and dashed lines that have been recognized so far. For any similar slopes,

the IFR checks to see if the new line is collinear with lines of the same slope. The

third constraint is coverage of the line segments: This refers to how much the dashes

cover the length between the two furthest endpoints of the dashes. If the coverage is

small, it could indicate that the lines are far apart. If the coverage is large, it could

indicate that the dashes are close together possibly touching. In that case, the lines

could combine to form a compound line, described below. If the IFR recognizes line

58



Figure 5-4: A dashed line can be recognized from as few as two dashes

segments as belonging to a dashed line, a dashed line primitive type object is created,

with its subcomponents being the line segments (dashes) that it was recognized from.

As each dashed line is recognized, the system displays its interpretation of the

intermediate feature on the drawing panel.

5.4.2 Compound lines

Compound lines are also recognized by the intermediate feature recognizer. Com-

pound lines are lines that are drawn with multiple strokes but contain the geometric

properties of a single line. Some examples of compound lines are multi-segment lines,

where a portion of a line has been drawn-over twice, as well as filled-in lines, where a

portion of a line was missing originally and then filled in. The same three constraints

that were used to recognize dashed lines are also used to recognize a compound line:

slope, collinearity, and coverage. The only difference in recognizing a compound line

is that a compound line has a higher coverage than a dashed line does. Once an edge

has been recognized, a line object is created and sent to the domain shape recognizer.

The resulting line segment produced by the edge represents the line between the two

59



Figure 5-5: As more dashes are recognized as part of a dashed line, the endpoints of
the dashed line update

furthest endpoints of the edge, even though the edge might be made with multiple

strokes from a multi-segment or filled in line.

5.4.3 Dashed Chains

A dashed chain consists of a sequence of one or more dashed lines connected at their

endpoints. It also refers to a single dashed line with zero or more waypoints.

After the IFR recognizes a dashed line, it creates a dashed chain object. As each

dashed chain is created, the intermediate feature recognizer analyzes all other dashed

chains in the sketch to determine if the new dashed chain can combine with other

dashed chains to form a larger dashed chain. If an endpoint of one dashed chain is

close enough to the endpoint of another dashed chain, then the dashed chains combine

to form a new dashed chain with the common endpoint now a waypoint of the dashed

chain.

60



Figure 5-6: The IFR recognizes dashes arranged in a circle as a Dashed Ellipse shape.

5.4.4 Dashed Ellipses

Dashed ellipses are another type of shape recognized by the IFR. In order to recognize

a dashed ellipse, the system first detects lines that are drawn near one another, with

a similar but slightly differing slope. The method is similar to detection of dashed

lines, except that in dashed lines the slope of the dashes should be equal but in dashed

ellipses the slope of the dashes should vary slightly. As more dashes are added that

fit this pattern, the intermediate feature recognizer extracts the two endpoints and

midpoint of each dash for all dashes in the possible ellipse. The resulting collection

of points is then sent to the ellipse primitive recognizer, which tries to fit an ellipse to

the points. If the primitive recognizer determines that the points form an elliptical

shape, then the intermediate feature recognizer creates a dashed ellipse shape.

61



62



Chapter 6

Modifications of the LADDER

System

The existing LADDER recognition system was able to recognize many shapes in

the COA domain. However, the existing system was limited in certain ways, and

modifications were made to allow the recognition and editing of more complicated

COA domain symbols. This chapter describes some changes made to the existing

LADDER system, including the ability to recognize symbols with multiple inheritance

and the ability to deal with image replacement and composition in the COA domain.

6.1 Multiple Inheritance

The LADDER System defines and recognizes shapes hierarchically. This system works

fine when there is a single way of defining a shape. If there are multiple constructions

of a shape, a LADDER shape description can’t easily be written that will allow every

construction. This is a problem of multiple inheritance.

Consider the example shown in Figure 6-1 which shows the possible ways to con-

struct an enemy mechanized infantry regiment. Starting at the top of the figure, an

enemy frame has been drawn. Each arrow leading down indicates one change made

to the symbol. There are 20 unique orders that can be used to construct the enemy

mechanized infantry regiment, with 16 distinct shapes encountered on the way, each

63



of which is a valid symbol in the COA domain. Any shape definition that is expressed

in terms of a change to the previous unit in the hierarchy would restrict drawing or-

der. This requirement is unnatural to users, so in order to allow symbols to be drawn

in any order, context shapes are used.

In the COA domain, modifiers of frames are constructed in the “context” of a

frame, and there can be multiple modifiers of frames. The LADDER shape language

allows components to be designated as “context” components. However, the system

did not treat these differently from other components. In response, the domain recog-

nizer was modified to allow context components to remain in the VSC after they are

recognized as a context component of a more complex shape. This allows multiple

modifiers to be recognized in the context of a frame. In the COA domain, frames

are designated as context shapes. As modifiers are drawn, they too get recognized

and are added to the VSC. Defining frames as context components of a shape allows

modifiers to be drawn in any order. Using this method of shape definition allows all

20 drawing orders for creating a mechanized enemy infantry regiment. It also allows

the recognition of any of the 16 possible shapes that may be drawn in the construction

of a the enemy mechanized infantry regiment, as shown in Figure 6-1.

The use of context components make the LADDER shape definition hierarchy

compact. Instead of requiring 16 unique LADDER shape definitions for the COA

symbols shown in Figure 6-1, these symbols can be recognized using only 7 LADDER

shape definitions. Each frame modifier has a unique LADDER shape definition, each

of which require the frame as a context component. For the example in Figure 6-1,

the 7 required shape definitions are: the three echelon modifiers (company, battalion,

and regiment), three icon symbols (infantry, armor, and mechanized infantry), and

the enemy unit frame. Using context components in the LADDER shape definitions

makes the shape definitions compact.

6.1.1 Symbol Editing

The LADDER system was designed so that each set of pen strokes correspond to one

recognized shape. However, with the use of context shapes, one set of pen strokes

64



Figure 6-1: Multiple Inheritance of Symbol Construction

65



may be associated with multiple recognized objects. For example, a set of pen strokes

representing a mechanized infantry regiment results in three different shapes in the

VSC: the enemy unit frame, a mechanized infantry regiment, and a regiment. From

the user’s perspective there is a single COA symbol for the mechanized infantry

regiment, which is represented by three different shapes in the VSC.

This change in design resulted in the need to change the way recognized shapes are

moved and edited, copied, and deleted. Shape modifiers have as a context component

the frame that they modify. If a symbol with a modifier is edited (eg. moved),

then the frame itself should only be modified once. However, based on the way the

system was implemented, moving a symbol resulted in the frame moving twice or

three times as much (depending on how many modifiers there were to the frame).

There was an extra step needed to make this work with context shapes. For a single

edit action on a COA symbol, a collection of shapes in the VSC may be modified.

The LADDER domain recognizer was modified to keep track of which components

were modified in a single edit action, and did not process duplicate edit commands

for a given component. This modification fixed the move, copy, and delete commands

errors associated with the original implementation of the system.

6.2 Image Replacement and Composition

The display component of a LADDER shape definition is used to specify how each

shape should be displayed. This works for separate shapes, but it doesn’t work for

the compositional nature of COA shapes. As was discussed in Section 6.1, there is

a unique recognized shape for each frame and for each modifier of that frame. Just

as modifiers of an image are recognized separately, the respective images for each

modifier are displayed separately.

As each image replaces pen strokes shown on the screen, the visual representation

changes, but the underlying stroke location data does not. The system still uses the

underlying location data of pen strokes for recognition, but if the image is not aligned

with the original strokes, new strokes drawn over the image will not match with the

66



old strokes. The problem is due to the possible difference in the scaling, translation,

or rotation between the displayed image and the original sketched strokes. Since

shapes are recognized hierarchically, users may draw over an image and expect a

more complicated shape to be recognized. However, if the original pen strokes are

not of the same scale as the displayed image, the complex shape will not be recognized.

Figure 6-2 is a visual example of the problem that would arise if the image doesn’t

match up with the stroke data. Figure 6-2a shows pen strokes the user has drawn to

indicate a friendly infantry unit. After the friendly unit frame is drawn, it is replaced

by its associated image, as shown in Figure 6-2b. The system would not recognize a

friendly infantry unit even though the geometric properties of a friendly infantry unit

appear to be met from the user’s perspective. Figure 6-2a shows the pen input to the

system, which shows that the pen strokes do not satisfy the geometric properties of

a friendly infantry unit because the endpoints of the two diagonal lines do not touch

the corners of the frame. If the LADDER shape definition is used to display an image

when a shape is recognized, the stroke data may not match with the displayed image,

which may prevent recognition of more complex shapes (as shown in Figure 6-2).

6.2.1 Preserving Scale, Translation, and Rotation

In order to correct the situation where the image differs from underlying shape data,

the components of the shape must be modified to fit the location of those components

in the image. The requirement for modification is to reset the location of each compo-

nent of the shape to its correct location in the image, based on the scale, translation

and rotation of the image. However, the image itself doesn’t contain any information

about components which can be used to set the location of the shape components.

One solution to this problem is to use the LADDER Shape Definition itself to

encode how components of a shape should be modified when replaced by an image.

The idea is to pair each name of a shape component in a shape definition with a unique

corresponding scale, translation, and rotation transform which is used to determine

how the component itself is modified and how the shape is displayed. The shape

definition itself encodes:

67



Figure 6-2: The geometric properties of displayed images may not match with input
pen strokes

• how components of a shape should be modified when replaced by an image of

that shape.

• how the image should be scaled, rotated, and translated when displayed.

Preserving Translation

The name of each component of a shape is used to determine the new location of the

component in relation to the displayed image for the shape. The geometric properties

of a shape are used to recognize the shape, independent of scale. The new location

of the components of a shape is based on the name of the component as defined by

the shape definition for the recognized shape.

Each of corner of an image has a unique name, as does the midpoint and each side

of a shape. For the modifiers recognized by the system, this set of points is sufficient

to enable hierarchical recognition. As other modifiers and more complex shapes are

added additional reference points may need to be added. In addition to points, some

68



sides and diagonals are also referenced. This collection of points/lines is used to set

the correct location of a component/alias based on the image scale, rotation, and

translation.

Preserving Scale

In a COA diagram, some symbols are displayed at a constant scale, while others vary

according to how the shape is drawn. Frames and frame modifiers are examples of

shapes displayed at a constant scale, while minefields and actions are examples of

shapes displayed at the size they were drawn. In order to preserve scale for both

image display and component relocation, a special designator for preserving scale

(“PS”) is used to indicate that scale should be preserved for the shape as well as

to indicate which component should be used to calculate scale ratio for resizing the

image.

For example, Figure 6-3a shows two sketched rectangles. After these strokes are

recognized as a friendly unit, fixed-size images are displayed, as shown in Figure 6-

3b. Scale is not preserved for unit frames. However, scale is preserved for minefields.

Figure 6-4a shows the stroke input for two minefields. The images that the system

displays are shown in Figure 6-4b. Each image is scaled to the size of the stroke input

for the minefield, because scale is preserved for minefield symbols.

Preserving Rotation

The rotation of images and symbols varies in a Course of Action diagram. Units and

unit modifiers are not rotated; they are always displayed at a canonical orientation.

Actions and minefields are examples of COA symbols that should be displayed at

the angles drawn. In order to indicate which shapes should preserve rotation, the

designation “PR” is added after the name of one component in a shape definition.

This designation is used to indicate that rotation should be preserved for the shape.

In order to detect rotation in a shape, each shape definition contains two desig-

nated reference points that are used to calculate its rotation. For shapes missing these

references, it is assumed that rotation is not preserved. If the references do exist, its

69



Figure 6-3: User strokes indicating a friendly unit are replaced by a fixed-size image

Figure 6-4: User strokes indicating a minefield are replaced with an image scaled to
the size of the sketched minefield

70



Figure 6-5: User strokes indicating a friendly unit are replaced by a horizontal image,
regardless of the orientation of the sketched rectangle

orientation is computed as the angle between this pair of points and the horizontal.

Shapes missing these reference points are always placed in a standard orientation.

Figure 6-5a shows two rectangles that have been drawn at different orientations.

These friendly unit frames are displayed as images at a fixed orientation (the hori-

zontal - as shown in Figure 6-5b) because rotation is not preserved for unit frames.

Rotation is preserved for minefield symbols. Figure 6-6a shows two minefields that

have been sketched at different orientations. The images the system displays for the

recognized minefields are shown in Figure 6-6b. The minefield images were rotated

to match the orientation of the sketched strokes because rotation is preserved for

minefield symbols.

71



Figure 6-6: User strokes indicating a minefield are replaced with an image at the
same orientation as the sketched strokes

72



Chapter 7

Results

The Course of Action Design Interface developed for this project demonstrates a suc-

cessful system capable of recognizing a Course of Action sketch. It is interactive and

allows the user to get immediate feedback when a symbol is recognized. It is capable

of transforming the input from sketching shown in Figure 7-1 to the automatically

generated output shown in Figure 7-2.

7.1 Recognized Shapes

The COA Design Interface is capable of recognizing a number of symbols in the

COA domain, including unit frames, frame modifiers, action symbols, and other COA

object symbols.

Table 7.3 displays the two frames - rectangular (friendly) and diamond (hostile) -

that can be recognized. Echelon and icon modifiers can be added to each frame.

Table 7.4 shows echelon modifiers that can be drawn on friendly unit frames, while

Table 7.5 shows echelon modifiers that can be drawn on enemy unit frames. Icon

modifiers can also be added to each of the frames. Icon symbols can be used for both

friendly and enemy units (depicted in Tables 7.6 and 7.9 respectively). Icon modifiers

can also be represented as a task organized symbol for friendly units only, and are

shown in Table 7.8.

Action symbols can also be recognized using the software system. Table 7.10

73



Figure 7-1: Sketched Input to COA Design Interface

74



Figure 7-2: Displayed Output from COA Design Interface

75



displays examples of recognized action symbols. The system also recognizes other

COA symbols shown in Table 7.11.

7.2 Combinatorics

The shapes depicted in these tables are only a fraction of the total number of shapes

that the software system can recognize. Due to the compositionality of COA unit

frames, different frame modifiers can be combined for the same unit. For friendly

units, this results in 180 possible units (10 friendly echelon modifiers (including un-

known) * 13 friendly icon symbols (including no icon) + 10 enemy echelon modifiers *

5 enemy icon symbols. This does not include possible task organization symbols. The

number of task organized combinations possible is shown in Table 7.1. If combined

with echelon modifiers, the task-organized modifier allows the recognition of an ad-

ditional 140 units (10 echelon modifiers * 14 task-organized symbols). In addition to

units, there can be five action symbols and two additional object symbols (minefield

and planned minefield. In total, the COA Design Interface is capable of recognizing

247 symbols, summarized in Table 7.2.

Number of Task-Organized Symbols in Frame Number of Combinations
1 2
2 3
3 4
4 5

Total: 14

Table 7.1: Task-Organized Icon Modifier Combinations

7.3 Future Work

7.3.1 Future Capabilities of Multimodal Input

Multimodal interaction can give meaning that is not clearly expressed through only

one modality, and speech input can be used to provide top-down recognition of shapes.

76



Type of Symbol Number Recognized
Unit symbols (w/ echelon and icon symbol modifier) 180
Unit symbols (w/ echelon and icon task-composition modifier) 140
Action Symbols 5
Object Symbols 2

Total: 327

Table 7.2: Summary of Recognized Shapes

Symbol Description Input pen strokes Displayed Image

Friendly Ground Unit

Enemy Ground Unit

Table 7.3: Recognized COA Frames

The ultimate goal of future extensions to the system is to allow the user to interact

with the system in a natural and easy manner, while improving recognition perfor-

mance.

Shape Creation

Recognition using the LADDER recognition system uses bottom-up recognition to

recognize complex shapes. Complex shapes are not recognized correctly if any of the

primitive or intermediate shapes that it is composed of are not recognized correctly.

In order to facilitate complex object recognition, a user could simultaneously state

the class of the object when drawing the object. In this manner, the speech input

could be used to allow top-down recognition of pen strokes. The user may incorrectly

draw or state the classification of the shape, so it will be important to determine how

the input from the two modalities should be combined.

77



Symbol Description Input pen strokes Displayed Image

Friendly Squad

Friendly Section

Friendly Platoon

Friendly Company

Friendly Battalion

Friendly Battalion Task Force

Friendly Brigade

Friendly Division

Friendly Corps

Table 7.4: Recognized COA Echelon Modifiers of Friendly Units

78



Symbol Description Input pen strokes Displayed Image

Enemy Squad

Enemy Section

Enemy Platoon

Enemy Company

Enemy Battalion

Enemy Regiment

Enemy Brigade

Enemy Division

Enemy Corps

Table 7.5: Recognized COA Echelon Modifiers of Enemy Units

79



Symbol Description Input pen strokes Displayed Image

Friendly Infantry

Friendly Armor

Friendly Mechanized Infantry

Friendly Self-Propelled Howitzer/Gun

Friendly Anti-Armor

Friendly Motorized Anti-Armor

Friendly Motorized Infantry

Friendly Recon

Table 7.6: Recognized COA Icon Symbol Modifiers of Friendly Units - 1

80



Symbol Description Input pen strokes Displayed Image

Friendly Motorized Recon

Friendly Armored Recon

Friendly Armored Anti-Armor

Friendly Mechanized Infantry w/ Gun Systems

Table 7.7: Recognized COA Icon Symbol Modifiers of Friendly Units - 2

Symbol Description Input pen strokes Displayed Image

Friendly Armor (Task Organized)

Friendly Mechanized Infantry (Task Organized)

Table 7.8: Recognized COA Icon Task Organized Modifiers of Friendly Units

81



Symbol Description Input pen strokes Displayed Image

Enemy Infantry

Enemy Armor

Enemy Mechanized Infantry

Enemy Self-Propelled Howitzer/Gun

Table 7.9: Recognized COA Icon Symbol Modifiers of Enemy Units

82



Symbol Description Input pen strokes Displayed Image

Fix Action

Follow and Assume Action

Follow and Support Action

Penetrate Action

Seize Action

Table 7.10: Recognized COA Action Symbols

Symbol Description Input pen strokes Displayed Image

Minefield

Minefield (Planned)

Table 7.11: Recognized COA Object Symbols

83



Shape Naming

In the Course of Action domain, it may be useful to be able to name sketched shape.

Examples of shapes that may be named in the CoA domain are objective areas,

phase lines, and units. Pen-input recognition becomes much more complex when

mixing shape recognition and character recognition in the same sketch. Since names

are often indicated in the textual description, adding text recognition might not be

useful. Instead, speech input could be used to input the names of symbols. Objective

areas and detailed information about the specific military unit may be indicated by

speech.

Assigning Relations

There are some kinds of information that are not easily communicated with pen

strokes. This might be as a result of the pen stroke being difficult to draw/recognize

or because there is no gesture capable of expressing that information. One example

is the task of assigning targets to artillery units in a CoA diagram. There isn’t a

symbol used to represent this; it is specified in the textual attachment to the CoA

diagram. A speech interface could be used to communicate this information.

Intent

Course of Action diagrams are commonly accompanied by a written textual descrip-

tion. While the diagram indicates which units are present and which actions they

are to perform, the additional written description is used to explain the order of

events and reasons why an action is to be performed. These components indicate the

commander’s intent for a possible battle, and for this reason the text is an integral

component of the operational picture that can’t be represented by graphical symbols.

Although commander’s intent can’t be represented by symbols, it is still an essential

component of the operational picture.

84



Chapter 8

Conclusion

I developed a software system that interprets a hand-drawn Course of Action dia-

gram. The system is capable of recognition of objects in the informal sketch, which

can then be copied, moved, and deleted. The system understands details about

Course of Action symbol geometry, encoded in a collection of LADDER shape defi-

nitions. Several modifications were made to the existing LADDER system - allowing

(1) multiple inheritance of domain shapes, and (2) replacing informal object with an

image while still being able to preserve the scale, rotation, and translation of com-

ponents of the object. Several system extensions were also developed, including the

Intermediate Feature Recognizer, COA Domain Handler, and Multimodal Recognizer.

The Intermediate Feature Recognizer is capable of recognizing shapes of intermediate

complexity as well as being able to automatically correct some stroke segmentation

errors, as well as deal with filled-in and multi-segment lines. The COA Domain Han-

dler is capable of interpreting the sketch, to get some level of understanding of the

relations between units and actions. The COA Domain Handler also applies a tem-

plate grammar, which allows the recognizer to only recognize combinations of COA

symbols which are valid in the COA domain. Some types of information are not easily

communicated through sketching, so the Multimodal Recognizer is used to combine

speech and sketching input. The system is capable of recognizing 327 common Course

of Action symbols. The system allows the user to create sketches in a natural manner,

through sketching, but the system understands the sketch - creating a formal Course

85



of Action diagram from an informal sketch.

86



Bibliography

[1] Christine Alvarado and Randall Davis. Preserving the freedom of sketching to
create a natural computer-based sketch tool. In Human Computer Interaction
International Proceedings, 2001.

[2] Christine Alvarado and Randall Davis. Resolving ambiguities to create a natural
sketch based interface. In Proceedings. of IJCAI-2001, August 2001.

[3] Randall Davis. Sketch understanding in design: Overview of work at the MIT
AI lab. Sketch Understanding, Papers from the 2002 AAAI Spring Symposium,
pages 24–31, 2002.

[4] Department of the Army, Washington, DC. Operational Terms and Graphics, no.
fm 1-02 edition, September 2004.

[5] K. Forbus, J. Usher, and V. Chapman. Sketching for military courses of action
diagrams. In Proc. IUI ’03, Miami, Florida, January 2003.

[6] Tracy Hammond and Randall Davis. LADDER: A language to describe drawing,
display, and editing in sketch recognition. In Proceedings of the 2003 Internaltional
Joint Conference on Artificial Intelligence (IJCAI), pages 461–467, Acapulco,
Mexico, 2003.

[7] Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch based inter-
faces: Early processing for sketch understanding. In Workshop on Perceptive User
Interfaces, Orlando FL, 2001.

[8] Shimon Ullman, Michel Vidal-Naquet, and Erez Sali. Visual features of inter-
mediate complexity and their use in classification. Nature Neuroscience, pages
682–687, July 2002.

[9] V. Zue, J. Glass, D. Goodine, M. Phillips, and S. Seneff. The summit speech
recognition system: Phonological modelling and lexical access. In Proc. Intl.
Conf. on Acoustics, Speech, and Signal Processing, pages 49–52, Albuquerque,
July 1990.

87


