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Introduction
We present a multi-domain architecture for sketch
recognition systems that we believe will make these sys-
tems both easier to construct and more robust in op-
eration. At the heart of our approach is a method that
combines high-level, domain-specific information with
low-level, domain-independent recognizers.

We aim to build a recognition framework that can
be applied naturally and efficiently to a variety of do-
mains, yet takes advantage of the power that comes
from context. We are motivated by the success of us-
ing domain-knowledge for speech understanding, and
inspired by the design of the Hearsay-II System (Erman
et al. 1980). Hearsay-II combined knowledge at various
levels of the speech interpretation process, including the
syllable, word, and phrase levels, to generate and choose
from multiple interpretations of a spoken utterance. We
believe a similar architecture can be effective in sketch
understanding.

There are a variety of issues to be addressed in such
an undertaking; this paper focuses on just one of them:
using domain-specific knowledge to guide recognition.

Knowledge Representation
The system combines three types of domain-specific
knowledge to aid recognition:
Domain-Specific Patterns Patterns particular to a

given domain, defined using a shape description lan-
guage to specify the component shapes that make up
the pattern and the geometric properties of and be-
tween these components (e.g. Figure 1).

Temporal Context Information about the order in
which the domain-specific patterns, as well as strokes
that make up those patterns, are likely to be drawn.

Spatial Context Information about configurations of
domain-specific patterns that are likely to occur.
The three knowledge sources are combined in a

Bayesian network framework. Each domain-specific pat-
tern specification is translated into a fragment of a
Bayesian network, with a node for that pattern con-
nected to nodes for each of the low-level shapes and
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their properties (Figure 1). Conditional probability ta-
bles are constructed taking into consideration how likely
the low-level shapes are to occur both within and out-
side of that pattern. Priors on the root nodes are influ-
enced by the temporal and spatial context in which the
shape is hypothesized to occur. Note that the shapes
and properties at the bottom are “observed” with some
degree of confidence depending on how well the data fit
the shape or property.

Recognition Algorithm
Recognition involves mapping a set of patterns to
the user’s strokes. Our algorithm generates a number
of possible interpretations—a mapping from a set of
strokes to a single high-level pattern—by combining
bottom-up pattern activation with top-down interpre-
tation. These interpretations are then pruned using the
notion of “islands of certainty” developed in Hearsay-II.

There are four steps in our recognition algorithm:
1. Bottom-up Step: As the user draws, the system

parses the strokes into ovals, lines, and arcs using
a domain-independent recognition toolkit developed
in previous work (Sezgin 2001). New interpretations
are hypothesized by instantiating the Bayesian net-
work fragments that specify high-level patterns that
include these low-level shapes, even if not all the sub-
components of the pattern have been recognized.

2. Top-down Step: The system then identifies the
missing subcomponents and attempts to reinterpret
strokes that are temporally and spatially proximal
to the proposed shape to fulfill the role the missing
component. If, for example, the system had detected
a body arc and two wires of the and-gate in Figure 1,
it would try to reinterpret spatially and temporally
adjacent strokes as lines to complete the body.

3. Ranking Step: Based on previously interpreted
parts of the sketch, the system identifies temporal
and spatial context for the newly recognized patterns
and propagates conditional probabilities through the
network using prior probabilities for the root nodes
influenced by context. The system then explores sets
of interpretations for the user’s strokes starting with
the highest ranked individual interpretation (an is-
land of certainty) using a best-first-search method
until it generates n possible sets.
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Sketch Description Network Fragment

Define And-Gate
L1,L2,L3 : line L1 L2 L3;
A: arc A
P1 : parallel L1 L2
P2 : same-horiz-position L1 L2
P3 : same-length L1 L2
P4 : connected A.p1 L3.p1

P6 : connected A.p2 L3.p2
P5 : meets L1.p2 L3
P7 : meets L2.p2 L3
P8 : semi-circle A1
P9 : orientation(A1, 180)
P10 : vertical L3

A P10

And−Gate

L3 P1L1 . . .L2

Figure 1: The description of an and-gate symbol includes the properties and low-level shapes that compose it. Each
of these shapes and properties becomes a node in a Bayesian network fragment.

4. Pruning Step: The system accepts any interpreta-
tions that have probability above a threshold and
eliminates any interpretations not appearing in the
sets generated in step three. All other interpretations
are deemed possible and are considered in relation to
the user’s next strokes when step one repeats.

Discussion
This approach provides seamless integration of bottom-
up and top-down recognition. Bayesian networks are a
natural tool for allowing low-level information to influ-
ence expectation of high-level components and in turn
other low-level patterns.

Our system combines three types of knowledge by
allowing the spatial and temporal context to alter the
prior probabilities of the root nodes in the Bayesian
network. Exactly how context should influence these
probabilities is a non-trivial question at the heart of our
approach that we will explore through experimentation.

A further challenge is how to enter the knowledge into
the recognition system in the first place. Grammars are
tedious to write and in previous work we found that
explicitly specifying context, while possible, is difficult.
We are currently investigating ways to learn the gram-
mars (as (Do & Gross 1996) has attempted), as well as
the temporal and spatial information, from examples.

Related Work
Shape description grammars were introduced formally
by Stiny and Gips (Stiny & Gips 1972) and have been
used mainly for generation of patterns. While they fell
out of favor for pattern generation, we believe they
are a feasible approach for recognition because under-
constrained productions are acceptable for recognition,
but not for generation.

Other sketch recognition systems include those devel-
oped by Landay and Meyers (Landay & Myers 2001),
Do and Gross (Do & Gross 1996), Forbus et. al. (For-
bus, Ferguson, & Usher 2001) and Stahovich (Stahovich
1999). Each system copes with recognition ambiguity in
a different way. Our previous work (Alvarado & Davis
2001) uses context to disambiguate between multiple in-
terpretations of a sketch, but is still driven by low-level
recognition accuracy. The work described here differs
from previous systems in its ability to allow high-level

interpretations to guide low-level recognition accuracy.
A limited amount of work in using top down infor-

mation to guide real-world visual interpretation exists,
including (Bienenstock, Geman, & Potter 1997). An ad-
vantage of sketch data over real-world image data is
that sketches are highly stylized, so the problem of lo-
cating (but not recognizing) low-level shapes is lessened.

Current Status
We are still implementing this algorithm and have not
yet tested it. We have a complete low-level, domain in-
dependent recognition tool-kit, as well as a code library
for recognizing geometric properties of and relations
among shapes. To test these ideas we intend to imple-
ment this system on an initial domain (e.g., a restricted
set of symbols from digital electronics) and report the
results at the Workshop.
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