
Perceptual Categories in Geometric Analogies

Mark A. Foltz
MIT Artificial Intelligence Laboratory

200 Technology Square
Cambridge, MA USA 02139

mfoltz@ai.mit.edu

Abstract

This work studies how the arrangements of shapes par-
ticipate in geometric analogies. Perceptually significant
categories of shape arrangements can be related in a lat-
tice of their non-accidental (unlikely to arise by chance)
features. In these lattices, thecodimension-change con-
straint restricts the possible analogical matchings by re-
quiring that they preserve the change in codimension, or
the direction of movement, in the lattices.

It extends the work of Evans [Evans, 1968] on visual
analogies, whose program considered similarity transfor-
mations to solve geometric analogy problems. Sever-
al arrangement-based examples illustrating the constraint
are presented.

Introduction
A familiar style of question posed on intelligence tests
ask the test-taker to form an analogy between two sets of
geometric figures. The question is typically posed in a
form like that found in Figure 1.

figure C to obtain exactly one of figures 1, 2, or 3, which is the answer.

A B C 1 2 3

Find the rule that transforms figure A into figure B.  Apply the rule to

A B C 321

Figure 1: Typical geometric-analogy problems. The an-
swers are figure 2 (top) and figure 3 (bottom).

This work analyzes geometric analogies as a problem-
solving domain. Previous work has primarily consid-
ered the role of similarity transformations of shapes
[Evans, 1968], but similarity transformations alone can-
not specify the solution to the second problem in Figure
1, because the dot must remain on the vertex of the tri-
angle. An additional constraint, thecodimension-change
constraint, is needed to require that the featuredot-on-
vertexremain in both the base and target of the analogy.

This paper begins with a discussion of geometric
analogies, then presents a problem-solving procedure
which introduces the role shape arrangements play. The

constraints between perceptual categories of arrange-
ments that indicate correct analogies will be presented,
and illustrated on a small set of geometric analogy prob-
lems.

Geometric analogies
This work focuses on analogies based only on the geo-
metric properties of the figures, not on what the figures
might represent. Geometric properties of a figure include
the spatial arrangement of its component shapes, and the
number of sides, location, size, and orientation of each
of those shapes.

For this purpose, a figure is an arrangement of a small
number of shapes in the plane, where a shape is con-
structed from a connected series of line segments. (For a
more formal definition ofshape, see Stiny [Stiny, 1980]).
A point (or dot) is also considered a shape. Potential am-
biguities in the decomposition of a figure of overlapping
shapes will be avoided by selecting shapes from a fixed
set in which these ambiguities do not arise. Also, the
color and texture of shapes will not be considered as rel-
evant to the analogies that might be constructed.

A geometric analogy problem is a series of pairs of
figures, divided into a base pair and a set of target pairs.
The base pair, labeled A and B, demonstrate the transfor-
mations applied to A that obtain B. The third figure, C,
and each of the answer figures, 1, 2,. . ., N, are possible
target pairs for the analogy. The target pairs are possible,
analogous applications of the transformations to figure
C. The task for the solver is to find the transformations,
like “make the triangle larger” in the first problem of Fig-
ure 1, that describe the relationships between the shapes
in figures A and B, substitute the shapes in figure C into
those transformations, and select the answer figure that
results.

This way of thinking about the problem, as using
relationships in base pair of figures to select a target
pair of figures, refers geometric analogy problems to
analogies in the larger sense. A broad definition of
analogy is the use of the relationships in one model
to reason about another model. The models may be
mental models [Johnson-Laird, 1983], conceptual graph-
s [Leishman, 1989], extensible-relations representation-
s [Winston, 1980], or some other formal, visual, or
natural-language representation. The base model is gen-
eralized, or a correspondence made between parts of the



base model and parts of the target model, so that new in-
ferences can be made about the parts of the target model.

Both approaches (analogy-as-generalizationand
analogy-as-correspondence) are represented in the
literature on analogy in cognitive science and artificial
intelligence [Falkenhainer et al., 1989, Winston, 1980].
For the purposes of this work, stating analogies as
correspondences between the shapes in one figure and
the shapes in another is more convenient. However,
a restatement of those analogies as generalizations of
transformations is easily possible.

Solving Geometric Analogies
To see how analogies are used in geometric analogy
problems, I propose a procedure for solving these prob-
lems. The procedure finds three kinds of relationships
among the shapes in the problem:

• non-analogy correspondences, which match instances
of the same shape in the figures depicting transforma-
tions (A and B, C and 1,. . ., C and N);

• analogy correspondences, which match shapes trans-
formed analogously in the problem (in figures A and
C, B and 1,. . ., B and N).

• and non-accidental featuresin the arrangements of
shapes in the figures.

The four steps of the procedure are:

1. Find non-analogy correspondences between the
shapes in figures A and those in figure B, and between
those in C and those in each of 1 through N.

2. For each non-analogy correspondence, find a shape
transformation that indicates how the source shape is
changed into its corresponding target shape. These
transformations indicate how a shape in one figure re-
lates to a shape in the other figure.

3. Find analogy-correspondences between the shapes in
figures A and C, and between the shapes in B and those
in each of 1 through N. These correspondences match
pairs of analogous transformations in figures A and B,
and figure C andn (n∈ 1...N).

4. Account for any non-accidental features in the spatial
arrangements of shapes in the problem.

The first three steps closely follow those in Evans’ pro-
gram [Evans, 1968]. The additional step accounts for the
importance of the arrangement of shapes in each figures,
and is intended to identify the correct solution in the sec-
ond problem of Figure 1.

Note that a commitment is not being made to the order
of execution of the four steps. Instead, these are four mu-
tually interdependent subproblems that are solved, im-
plicitly or explicitly, when the solver selects an answer
figure.

The example problem worked throughout this section
is illustrated in Table 1.
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P − on perimeter
M − at center
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N − endpoint on vertex
L − collinear with side
Features

Table 1: Worked-through example. From top to bottom:
Entire problem with answer circled; Steps 1, 2: Non-
analogous correspondences with transformations; Step 3:
Analogous correspondences; Step 4: Category lattices
over relevant shapes, and the category correspondence
that solves the problem.



Step 1: Non-analogous shape correspondences
In the first step, correspondences are found between
shapes in figures A and B, and separately for the pairs of
figures{C, 1} through{C, N}. These correspondences
associate each source shape in one figure with a target
shape in the other figure.

These correspondences should give the simplest ex-
planation of how the target shape relates to its source.
For example, when choosing a target for a circle among
the possible sources of an identical circle, a triangle, or a
larger circle, the simplest explanation would match the
circle to its identical twin. Each of these correspon-
dences attempts to describe the simplest transformation
that derives the target shape from its source.

Step 2: Similarity Transformations
For any shape, there are transformations that change the
shape into other shapes. Although the full set of possible
transformations is particular to the shape in question, the
similarity transformations – translation, rotation, and s-
caling – apply to almost any shape. Transformations can
deform shapes in other ways, for example by adding or
removing sides from a polygon, or even adding or remov-
ing entire shapes from the figure (by correspondences
from or to an “empty shape”). However, the similarity
transformations provide many possibilities for geometric
analogies, since they can be thought of as possible views
of a rigid, planar object kept perpendicular to the observ-
er.

Step 3: Analogous shape-correspondences
These correspondences capture the analogy by matching
transformations found in steps 1 and 2 across the base
and target pairs of figures. The criterion for forming
these correspondences is,match pairs of shapes in fig-
ures A and C, and in figures B and 1 through N, that have
the most similar shape transformations between them.
The answer figure whose analogy-correspondences ac-
count for all of the shape transformations in the base pair
of figures A and B is the best choice by this measure.

For the problem in question, analogy-correspondences
are shown in the third row in the figure. For
answer 1, there is no way to match the trans-
formations between the shapes in figures A
and B, {translate, translate, translate+scale}
to those between the shapes figures C and 1,
{none, translate, scale}. For figures 2 and 3, however,
there are one-to-one correspondences between all the
transformations, leaving the solution ambiguous.

Steps 1-3 do not account for the placement of the dot
on the perimeter of the circle in figures A and B, and its
placement on the perimeter of the triangle in figures C
and 3. This arrangement is maintained in the answer fig-
ure, 3, but not in figure 2, and so determines the correct
answer. So, although steps 1-3 solve analogies based on
transformations among individual shapes, the relation-
ships among the shapes inside the figure indicate the so-
lution to this example.

Step 4: Shape arrangements

What is needed is a way to relate the possible arrange-
ments of shapes within a figure. Although similarity
transformations can relate one shape to another through
translation, scaling, and rotation, another representation
is necessary for describing the perceptually significant
categories of arrangements of multiple shapes.

Category Lattices and Analogies
Given two examples of the same shapes arranged in d-
ifferent ways, how would one tell if they were differed
in a meaningful way, or not? In other words, how could
one describe a shape arrangement as the placement of its
shapes varies?

Some significant differences can occur from imprecise
moves. For example, flipping a square and triangle ar-
ranged left-to-right so that they are arranged right-to-left
does not depend crucially on the exact amount of trans-
lation that each shape undergoes; many possible trans-
lations suffice to distinguish the classesleft-to-right and
right-to-left.

Other arrangements, though, arenon-transverse; a s-
mall perturbation in the position of one shape will change
how the solver categorizes the arrangement. For exam-
ple, moving a line whose endpoint is just at the center of
a circle off of that point will lead the solver to classify
the new arrangement with other arrangements in which
the line is off-center.

Feldman shows that these non-transverse shape ar-
rangements built of non-accidental (unlikely to arise by
chance) features correspond to perceptual categories in
observers [Feldman, 1992]. So, if there is a move from
one such category to another between the base figures
A and B, the solver would expect an analogous move to
take place between the target figure C and the correct an-
swer figure. Or,

Moves between non-transverse shape-arrangements
correspond to moves in a category lattice built from
non-accidental features in the arrangements, and
analogies between arrangement moves proceed ac-
cording to a codimension-preserving mapping be-
tween the respective lattices.

Category lattices of non-accidental features
are described by Richards, Feldman, and Jepson
[Richards et al., 1992]. In these lattices, a set of non-
accidental features are enumerated for the shapes in
question. If all of the features are completely indepen-
dent, a complete boolean lattice can be formed from the
binary presence or absence of each feature. However,
if there are constraints among the features that preclude
the appearance of some in the presence of others, then
the lattice will not include every feature combination
[Feldman, 1995].

The codimension of a level in the lattice is the num-
ber of “degrees of freedom” removed from the top-level
category, which is the most arbitrary arrangement. If the



locations of a set of shapes were parameterized, the codi-
mension would be the number of parameters fixed by the
presence of non-accidental features.

Each collection of shapes will have a different cate-
gory lattice depending on the non-accidental features in
their arrangements. For examples of lattices for pairs of
shapes drawn from the set{point, line, circle, triangle},
see Table 2.

Arrangement transformations as lattice moves
A transformation applied to shapes that changes the per-
ceptual category of their arrangement is a move in the
corresponding category lattice. Such a move may occur
from a category to one of higher or lower codimension,
and it implies that the set of non-accidental features has
changed.

The length of a lattice move is defined as the number
of arcs on the shortest path from the source to the desti-
nation category in the lattice. Note that this distance may
be different from the Hamming distance of the feature
sets (the number of features added or removed from the
initial set).

A shortest-length criterion provides a way of finding
the best transformation between two arrangements, us-
ing the same argument that motivated choosing the iden-
tity transformation among similarity transformations: it
is the simplest explanation (for some definition of sim-
ple) of how one arrangement came to be from the other.

Arrangement-based geometric analogies and
lattice homomorphisms
Moves in category lattices describe the differences in t-
wo arrangements of shapes, in the same way that similar-
ity transformations describe the differences in two shape
poses. To form analogies between shape arrangements,
a way is needed to relate a move in one feature lattice to
another lattice, built of features in another set of shapes.

The relevant relationships are captured in a mapping
from one lattice the other. A general lattice mapping is
any function from the categories in one lattice to the cat-
egories in another lattice. Mappings useful for analogy
are not arbitrary, but should preserve the structure of the
lattices – the partial order of the categories dictated by
their codimensions. The structure-preserving mapping is
thus a homomorphism, or more formally:

Definition 1 Lattice homomorphism. Let F andF ′ be
sets of features{ f1, f2, . . . fn} and { f ′1, f ′2, . . . f ′m},
and C ⊆ 2F , C′ ⊆ 2F ′ be category lattices defined on
those features, possibly with formal constraints. Let
g : C2 → {true, false} andg′ : C′2 → {true, false} be lat-
tice properties defined on pairs of categories inC andC′,
respectively. Then a lattice homomorphismh : C→C′ is
a function such that for everyc1,c2 ∈C,

if g(c1,c2) theng′(h(c1),h(c2)).

The natural structure to preserve between lattices is
the relative ordering of categories by codimension (as in
Figure 2). Using Definition 1, for the categoriesc1, c2 in

C, g(c1,c2) is true if and only ifcodim(c1)≤ codim(c2),
and similarly forg′ defined over the categories inC′. Re-
stating the general definition with this specific property,

Definition 2 Codimension-preserving lattice homo-
morphism. Let C and C′ be category lattices as de-
fined above. Then a lattice homomorphismh : C → C′
is codimension-preserving just in case for everyc1, c2 in
C

if codim(c1)≤ codim(c2) in C then
codim(h(c1))≤ codim(h(c2)) in C′.

In geometric analogy problems, such as homomor-
phism allows three kinds of analogy among pairs of
shape arrangements: pairs with lattice moves that in-
crease codimension, moves that decrease codimension,
and moves that keep it the same. The claim stated in
the beginning of this section could thus be rephrased as
the codimension-change constraint: a geometric analo-
gy based on shape-arrangements preserves the direction
of codimension change in the base and target category
lattices.

ABc aBC

abC

abc

ABC

AbCABc

Abc

aBC

abC

abc

ABC

Figure 2: A codimension-preserving homomorphism
from a full lattice to a constrained lattice, shown by the
dotted lines.

This claim is illustrated in the first example, Table 1.
At the bottom the (trivial) partial homomorphism from
one lattice to the other indicates that 3 is the correct an-
swer. The analogous lattice move in this case is one that
keeps the codimension the same, which is not done in
answer 2.

Note that a feature missing from the lattice for this
example is the placement of the dot on the perimeter
of the circle in alignment with the coordinate frame of
the figure. These lattices could be augmented with such
coordinate-frame aligned features, which would change
the length (but not the direction) of the lattice moves.1

Examples
The set of examples shown in Table 3 is drawn from a re-
stricted set of shapes{point, line, circle, triangle}. Each
figure in the problem has exactly two of these shapes, and
shapes are not added or removed from the figures. The
category lattices for possible pairs of these shapes are
shown in Table 2.

1This is another kind of “frame problem” – in this case, the
determination of which features should be attended to in visual
learning and analogy.



The shapes will have the same scale and orientation
throughout, so that the correspondences and transfor-
mations in steps one through three of the solution pro-
cess described above have already been solved. (A com-
plete algorithm for this procedure would simultaneously
search the space of similarity-transformation based cor-
respondences and lattice moves.) The purpose of these
examples is to illustrate the codimension-change con-
straint.

The examples, their corresponding lattice moves,
and their codimension-preserving homomorphisms are
shown in Table 3.

It is interesting to note that some of the solutions are
ambiguous. For example, in problem 4, both solutions
2 and 3 correspond to a move to higher codimension in
the triangle-circle lattice. In this case, the ambiguity is
resolved in favor of the homomorphism that maps cate-
gories with the same concept, “touching.” This suggest-
s that favored solutions have analogous features as well
as analogous lattice moves. Adding possible feature-
to-feature correspondences to the model would further
broaden the space of possible analogies in this domain.

Conclusion
This work claims that categorical arrangements of shapes
in figures form a significant basis for geometric analo-
gies. These analogies of non-transverse arrangements p-
reserve the direction of codimension change in the corre-
sponding category lattices of non-accidental features. It
builds on the work of Richards and Feldman in defining
those lattices and showing their relevance for perceptual
categorization in observers [Richards et al., 1992].

It also extends Evans’ work in developing a compu-
tational solution to geometric analogy problems by aug-
menting his solution to account for non-transverse shape
arrangements in the problem figures. Although Evan-
s’ system computed coarse spatial relationships between
shapes such as LEFT, RIGHT, ABOVE, BELOW, and
INSIDE, the problems presented here require a richer
model of shape arrangements. Although an implemen-
tation of the framework presented here is possible, au-
tomating the extraction of non-accidental features from
arbitrary shape arrangements is a remaining research
goal.

This work also studies visual analogical reasoning.
Most work to date on analogical reasoning has assumed
a fundamentally sentential representation of the model-
s in question [Kedar-Cabelli, 1985]. However, the spe-
cial characteristics of visual representations in human
and computer problem-solving is a growing area of re-
search [Glasgow et al., 1995]. Future questions along
those lines that bear investigation include,

• What is the relationship between sentential analogy
and visual analogy for a particular domain?

• What advantages do visual analogies have for learn-
ing, recall, and problem-solving?

• Can the process of visual analogy be modeled algo-
rithmically?
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Table 2: Category lattices for pairwise non-accidental
features. Upper case letters indicate the presence of a
concept, and lower case letters its absence. The con-
straints for these incomplete lattices are omitted.
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Table 3: Examples of analogies between non-transverse
shape arrangements. The correct answer is circled for
each problem. On the right of each problem, the left-
hand lattice shows the lattice move from figure A to fig-
ure B. The right-hand lattice shows the correct lattice
move from figure C to the answer figure. The dotted ar-
rows show one possible codimension-preserving homo-
morphism from one lattice to the other.


