MIT Artificial Intelligence Lab June 19, 2002

Dr. Jones:
A Design Explorer’s Magic Lens

Mark A. Foltz
MIT Artificial Intelligence Lab
June 19, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 1

MIT Artificial Intelligence Lab June 19, 2002

Outline
> Why diagram software?
e Dr. Jones: A Diagramming Partner
e Dr. Jones: Status and Challenges

e Questions and Discussion

The agenda for today’s meeting is my progress on thesis research on software
diagramming as an aid for the understanding and redesign of existing software.

First 1l motivate the work by describing some of the reasons we diagram
software.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 2

MIT Artificial Intelligence Lab June 19, 2002

Why diagram existing software?
¢ Understand structures and dependencies
e Detect flaws and bad smells

e Plan refactorings, redesign, and new
features

It is commonly accepted that software diagramming is an invaluable aid for
software engineers.

It helps them understand their existing software and explain it to others.
It points out problems that are hard to infer from the source code alone.

And it is the best way to plan large-scale structural changes in the software,
such as refactorings, redesign, and new features.

Assisting software engineerrs in these tasks is the main interest of my research.

Diagrams let the programmer step back from the code and think abstractly and
hypothetically about the design.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 3

MIT Artificial Intelligence Lab June 19, 2002

Automated Diagramming

e Good news: You can do it automatically

The good news is that reverse engineering existing software into diagrams is
not that difficult, and modern IDEs like TogetherSoft and Rational Rose
provide this capability.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 4

MIT Artificial Intelligence Lab

You can do it aggl:oma

Way too much information

June 19, 2002

all approaches don’t seem to work very well.

The bad news is that there is often way too much information in these
diagrams. Diagramming everything results in large, complex diagrams, like the
one you see here, that are not very usable. Moreover, there are so many kinds
of relationships in software that’s it’s hard for the tool to guess which
relationships designers need to make design decisions. These one-diagram-fits-

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

MIT Artificial Intelligence Lab

— = ﬁ-\ut _aatedi)lagrammmt

IYIII

A N (=] ! “ =|

June 19, 2002

For example, TogetherSoft first shows everything, and then lets the
programmer to filter out the parts of the diagram he doesn’t want to see

But this is not a very natural way of getting to the diagram the programmer
wants.

Instead, if the tool knew why the programmer wanted the diagram, it could
create a diagram with only the relevant information.

I’d like to explore the approach that starts with nothing and tries to show the

programmer only what is relevant, instead of starting with everything and
asking him to filter out what’s not.

We can reduce these diagrams’ complexity by filtering the information in them.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

MIT Artificial Intelligence Lab

Pen-and-Paper Diagramming

A
[k 3
(ed

TR -
@ ek aik il 3 24

[l g O €3/
l Bt oy

This is similar to what a programmer might do if they didn’t have a
diagramming tool, and were drawing software diagrams with pen and paper.

Or perhaps printing out a manually filtered diagram from an IDE and
annotating it.

What are the qualities of these pen-and-paper diagrams that make them useful?

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

June 19, 2002

MIT Artificial Intelligence Lab

Pen-and-Paper Diagramming
P

¥ &fS"l\, I”L. (..5“’)
o

5 g
o ek skl 3 %,
,Mf;; bl [€ 3/

lawd €) {(p /

e Specific to design intentions.

June 19, 2002

Unlike the IDE diagrams, pen-and-paper diagrams are very specific to the
programmer’s design intentions, both in the information they contain and

the way it is presented.

Their marks convey facts about the program, problems that need attention, and

design intentions to fix and enhance the program.

For example, in this closeup the programmer has denoted hard-coded values
with a red star which will need to be fixed later.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

MIT Artificial Intelligence Lab

Pen-and-Paper Diagramming

N\

—————— - - ﬁ—l__.,_..,______\
\ EEEEEEE—————— -

b | o, bk GO |
/%’H-“*M'“m il asin o bl |

@ il e wale B3 21
4

NE

,[mj.i-h cadiba) [€ 73/
s (&)
p— ST

==

e Specific to design intentions.

¢ Isolates relevant parts of the program.

e Records problems and intentions (to-dos).
¢ Flexible, but static.

June 19, 2002

Two key aspects make these diagrams useful. First, they isolate the parts and
relationships in the program relevant to the intended changes, which keeps
them simple. This makes it easy to visually reason about the current and
Although the programmer might be aware of other parts of the program which
might be impacted, they aren’t necessarily represented, again to keep the
diagram simple.

The second aspect is that they record problems and intended changes in the

program, so they can serve as a visual "to-do’ list when later implementing the
changes.

These hand-drawn diagrams are very flexible, but take effort to produce, may
be an inaccurate, and can’t easily represent redesigns (unless the programmer
goes to the trouble of drawing multiple diagrams).

future state of the software, which has been called *“reasoning in the diagram’’.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

MIT Artificial Intelligence Lab June 19, 2002

Outline
Why Diagram Software?
> Dr. Jones: A Diagramming Partner
e Dr. Jones: Status and Challenges

¢ Questions and Discussion

My research proposes a tool, Dr. Jones, that combines automated diagramming
with the focus and task-awareness of hand-drawn diagrams.

Dr. Jones’ goal is to collaborate with the programmer to explore the design
family of a Java program.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 10

MIT Artificial Intelligence Lab June 19, 2002

Dr. Jones: A Diagramming Partner

e The computer can be a partner in this
process.

e Want to create diagrams like hand-drawn
ones, but dynamic.

e Thesis: a three-phase interaction model.

My thesis is that Dr. Jones should play the role of a semi-intelligent
diagramming partner in software design exploration. Dr. Jones knows about
software structures, how to diagram them, and some of the ways they might be
changed, but not enough to make design decisions — that’s up to the
programmer. Dr. Jones automates the drawing of the diagrams, and, like hand-
drawn ones, they contain task-specific information and remind the programmer
of the changes he intends to make.

But, unlike hand-drawn diagrams, they are dynamic: they can show redesigns
and record multiple design alternatives. I propose a three-phase model of
interaction between Dr. Jones and the programmer, which I believe will
accomplish this goal.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 11

MIT Artificial Intelligence Lab June 19, 2002

Phase 1: Obtain a Focus Set

| [|
|car| [Truck| [van| | Diesel| [Gas| [Hybrid |

The first part of the interaction lets the programmer to choose what parts of the
program he would like to work on while browsing an overview of the program.

This high-level overview of the program’s classes doesn’t have deep detail, but
shows the is-a and has-a relationships among the classes, like a UML object
model.

This example is a fragment of the object model for a program that deals with
vehicles.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 12

MIT Artificial Intelligence Lab June 19, 2002

Phase 1: Obtain a Focus Set

| [|
|car| [Truck| [van| | Diesel| [Gas| [Hybrid |

Focus Set = Focus of Attention

The chosen classes constitute the initial focus set for Dr. Jones. The focus set is
a small number of program elements at the focus of attention for the
programmer and Dr. Jones at any one time. It’s Dr. Jones job to maintain and
diagram this focus set as the programmer explores designs.

In this case the programmer wants to look at the Vehicle and Engine base
classes.

Focus+context views, showing more detail on selected classes, could help the
programmer understand the program and make a good choice for this focus set.

Also, the visualization of ““bad smells’’ in the code would be useful here.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 13

MIT Artificial Intelligence Lab

Phase 2: Understand Intentions

Vehicle

getHorsepower():int
getWeight():int

getOwner():Person

Y

anEngine:Engine
aHorsepower:int

Engine

getCost():int
getCylinders():int

aCost:int
numCylinders:int

Dr. Jones then diagrams the focus set in a variant of a UML object model.
These diagrams contain the structural elements the programmer

might want to manipulate, like classes, methods and properties, as well as
dependencies among them, in this case a has-a relation between Vehicle and
Engine.

The next phase of the interaction is for the programmer to tell Dr. Jones what
he wants to do to the program.

This is the crucial step in the interaction, because how well Dr. Jones
understands these intentions will determine how well it can diagram the
software.

Fortunately, there is a common way emerging for describing how to change
programs (L.e. fowler’s refactorings).

Dr. Jones will be able to interpret intentions based on a vocabulary of these
refactorings (to be described later).

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

June 19, 2002

14

MIT Artificial Intelligence Lab

Vehicle

getHorsepower():int
getWeight():int

getOwner():Person

anEngine:Engine
aHorsepower:int

Phase 2: Understand Intentions

> Engine

getCost():int
getCylinders():int

aCost:int
ylinders:int
aHorSepower:int

June 19, 2002

interfaces.)

Dr Jones records this intention and ...

Here, the programmer decides that ““horsepower’’ is really a property of an
Engine, not a Vehicle, and indicates the Move Field refactoring.

I'haven’t committed to a UI modality for this kind of interaction; a
conventional WIMP technique like drag-and-drop would work, although I'd
also like to explore gestural or multimodal techniques, keeping with the
metaphor of interacting with a pen-and-paper diagram.

(Of course this brings up all the complexities of recognition-based user

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

15

MIT Artificial Intelligence Lab

Phase 3: Update Focus Set, Diagram

Vehicle

getHorsepower():int
getWeight():int

getOwner():Person

anEngine:Engine Engine

! getCost():int
1 getCylinders():int

L aCost:int
VehicleUl numCylinders:int
Fleet aHorsepower:int

... transforms the diagram to show the effect of the refactoring, updates the
focus set, and diagrams this new focus set. The focus set now includes the
participants in the refactoring and its indirect effects, which are program
clements that may require further changes to produce a valid program. Here,
moving horsepower to Engine causes getHorsepower() in Vehicle to refer to a
missing field, and in turn clients that depend on getHorsepower() may need
further change. (The likely solution is to delegate getHorsepower() to the
anEngine object, so clients won’t have to change.)

It’s important to note is that Dr. Jones doing “virtual refactoring.” It’s
transforming the diagram, not the program — it’s a design exploration tool, not a
software transformation tool. That’s because that actually doing the
transformation may involve asking the programmer lots of questions he doesn’t
want to worry about when thinking about design.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

June 19, 2002

16

MIT Artificial Intelligence Lab June 19, 2002

Dr. Jones: A Diagramming Partner

To summarize, Dr. Jones collaborates with the programmer in diagramming a
program and its design alternatives.

It maintains the focus set of program elements throughout a design dialogue
with the programmer.

The focus set contains only the relevant elements at each step, so the diagrams
stay simple.

These focus sets can be kept in a history so that the programmer can revisit
previous steps and branch to explore alternatives.

This could be an opportunity for design rationale capture, although that’s not
what I’'m focusing on in this thesis.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 17

MIT Artificial Intelligence Lab June 19, 2002

Outline
Why diagram software?
Dr. Jones: A Diagramming Partner
> Dr. Jones: Status and Challenges

¢ Questions and Discussion

Now I will discuss some of the specific research challenges in realizing Dr.
Jones and the progress of a prototype implementation.

Each of the challenges points to a contribution this research intends to make.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 18

MIT Artificial Intelligence Lab

Challenge 1: Redesign Vocabulary

o Fowler’s refactorings
e Contribution: Refactoring Verbs

The first challenge is finding a way for the programmer to describe to Dr. Jones
how he wants to change the program.

My starting point is Martin Fowler’s list of 72 common ways object oriented
programs can be refactored.

I’ve tried to take his list and find a group of underlying *'refactoring verbs’’
that cover many of the cases he describes.

Each of these verbs can be applied to multiple kinds of program structures,
resulting in a more economical vocabulary.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

June 19, 2002

19

MIT Artificial Intelligence Lab June 19, 2002

Challenge 1: Redesign Vocabulary

o Fowler’s refactorings
e Contribution: Refactoring Verbs

Syntactic
CREATE
REMOVE
RENAME

MOVE
HIDE/REVEAL

The first set of verbs are syntactic — they are concerned with the lexical and
nominal relationships among program structures.

Hide and reveal manipulate visibility modifiers, L.e. public, protected, private.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 20

MIT Artificial Intelligence Lab

Challenge 1: Redesign Vocabulary

o Fowler’s refactorings
e Contribution: Refactoring Verbs

Syntactic Semantic
CREATE COMPOSE /DECOMPOSE
REMOVE ENCAPSULATE/EXPOSE
RENAME GENERALIZE/SPECIALIZE

MOVE ALTER TYPE
HIDE/REVEAL

June 19, 2002

program design.

than formal at this point.

specific meaning is language-dependent.

The second set are semantic — they deal with the set of concepts modeled by the
However, the distinction between syntactic and semantic is more organizational

The majority of Fowler’s refactorings can be restated in terms of one or more
of these verbs, and the resulting verb-plus-nouns representation of design
change more naturally fits into the interaction model I have proposed.

These concepts also can apply to other programming languages, although

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

21

MIT Artificial Intelligence Lab

Challenge 2: Focus Tracking

e Where will future refactorings occur?

e Contribution: A context-sensitive
diagramming algorithm.

The next challenge is to track the programmer’s focus of attention as he

modifies the design.

Each new focus set should let the programmer see the results of the last change.
These places are likely spots for where the next refactoring will occur.

To derive a good focus set, Dr. Jones will have to reason about where the

programmer’s next design moves might take place.

One way is fpr Dr. Jones to recognize or be told that a multi-step refactoring is
taking place (Le., applying a design pattern like the Observer pattern).

Mark A. Foltz mfoltz@ai.mit.edu

Thesis Committee Meeting

June 19, 2002

22

MIT Artificial Intelligence Lab

Challenge 2: Focus Tracking

e Where will future refactorings occur?

e Contribution: A context-sensitive
diagramming algorithm.

Element Score
Vehicle 1.0
Engine 1.0
aHorsepower 1.0
getHorsepower() 0.7

June 19, 2002

Another way is to use the heuristic that a refactoring’s effects will be likely
sites for further refactoring. My current algorithm sketch has each refactoring
specifying weights for related program elements and dependencies, reflecting
their relative importance to the programmer. Each element can be rendered at
certain levels of detail, and elements with higher weights are given more screen
space. Screen space is allocated to maximize a weight*space score.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

23

MIT Artificial Intelligence Lab

Challenge 2: Focus Tracking

e Where will future refactorings occur?

e Contribution: A context-sensitive
diagramming algorithm.

Vehicle

getHorsepower():int
getWeight():int

getOwner():Person

!
anEngine:Engine > Engine
'I‘ getCost():int
,’ getCylinders():int
L .
- aCost:int
VehicleUl numCylinders:int
Fleet aHorsepower:int

It’s a variant of the bin packing problem, but the final size of the diagram is
dependent on the graph layout algorithm, which makes it harder.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

June 19, 2002

24

MIT Artificial Intelligence Lab

Challenge 3: The Crystal Ball Problem

e Clear picture at the beginning ...
e But it begins to get cloudy.

Cilerifer S

~
~

4
'
'

7
Vehicle[[]

The third challenge is what I call the crystal ball problem. At first, Dr. Jones
can get a clear idea of the program’s structure by examining the program text.

But as the programmer makes changes, the design evolves away from the
original program and it becomes more and more difficult to predict the
dependency structure of the program. This is because some refactorings can
result in multiple possible dependency structures.

For example, supposed the programmer wanted to decompose the Vehicle class
into Writable, an interface for objects that can be written to files.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

June 19, 2002

25

MIT Artificial Intelligence Lab

Challenge 3: The Crystal Ball Problem

e Clear picture at the beginning ...
e But it begins to get cloudy.

ileriter |« _ Silerriter [
.

~
S N S~ <
~ ~ ~o

-

A

4
7’ 4 -7
. /-

7 /’/ L
Vehiclel[[Vehiclel [[~

Now every existing Vehicle dependency has the choice of using the old Vehicle
interface, or the new Writable interface.

We could ask the programmer to make these choices explicitly, or assume that
things should stay the way they are.

I don’t have a good solution to this problem -- yet.

At least, the programmer could alternate between Dr. Jones and a source-code
editor to implement changes periodically, then refresh Dr. Jones.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

June 19, 2002

26

MIT Artificial Intelligence Lab

Dr. Jones: Status
| []
" () Or. Jones: No Snakes Please 0086
Project Help
] fhome; mfoitz; infoarch, drjones [examples/ Drjones.drj o ¥
Project
_APIs | Multiplicities |
A— e B, TSN - T G]
e ity RS (k) e aE) N
(TreeLayoutode) (Comparable) G avistor) (LenicalVisitor)
(Classtiode)
<outside graph beundary>
)-\Li‘n Map]@hskﬁﬂgn E}Bulzb‘a [Node | £ T Jvisi]:ngll'am JActionListener | ontrolier JModeiProtocol
h
DPackage|
D jPackageProx
I archyNode JComparable | CompoundCiassiode |ClassNode | Diagram JActionspeaker
Gayoutiiode Bcroliable |
[iassDiagram Jact ier | iasADiagram Jact
[3|

its implementation.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

These three challenges form the gist of my next lines of research.
For now, I’d like to briefly show the Dr. Jones prototype and talk a little about

Dr. Jones can draw an object model of most Java programs. More detailed
nformation is available to it, but only class names are shown in the UL
Information from the JavaDoc documentation generator and Allison’s
Superwomble is merged into a unified representation.
Visitor classes traverse this representation to generate diagrams of the program.
Some are created with layout engines and components I’ve written, others use
the graphviz and grappa tools from at&t research.

June 19, 2002

27

MIT Artificial Intelligence Lab

Summary
Why diagram software?
Dr. Jones: A Diagramming Partner
Dr. Jones: Status and Challenges

> Questions and Discussion

June 19, 2002

To summarize:

I claim that diagramming software is useful for understanding and planning
structural changes, but

current tools use a one-diagram-fits all approach without asking the
programmer what they want to do to the program.

Dr Jones collaborates with the programmer in exploring the program’s design
by understanding an economical vocabulary of refactorings.

By doing so, it can create focused, relevant and simple diagrams.

I haven’t wrote out a formal research plan, but my medium-term goals would
be to put in writing my answers to challenges 1, 2, and 3 (as formally as is
needed) while working on the implementation of Dr. Jones.

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting

28

