
MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 1

��������	
�������������	����
� � � � ����� 	�� ���� �� ��	

� ��� ����� �� ��

��	����� ������� ��� �� � ! �� " # ��" �� �$

% � ��$ ���& ' ! �& ((&

Hello, today I am going to talk about my progress on my thesis research on the
relationship between software diagramming and software refactoring.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 2

% �� ���

Ø) ��$ � �* ���+ �# , �	�	

�

- , ����	���� ��� ������.

�

# , ����������	 � ��� ������ / ���� �+ ���
0 �	�

�

���� ������

My agenda is to first briefly describe the problem I’m working on and my
approach to it.

Then I will talk about refactorings in Dr. Jones – what Dr. Jones knows about
them and what space of refactorings Dr. Jones will incorporate.

Then I’ ll illustrate a scenario of multiple refactorings in Dr. Jones and end with
a status update.

First I’ ll describe the problem I’m attacking.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 3

# , ��) ��$ � �* �" 	�� �+ �	����1 �* � � �� ��2

�

������* 	�������� ��� ����� � �����+ �	���
�

0 ������ 3 ��������+ �+ �����* 	���������� �* � � ��
�

���* �	��� � ��������	�+ �������, �� ��3 ��+ 3 � �� ��

That problem is the complexity of redesigning software.

When thinking about design, programmers prefer diagrams that abstract from
the details in source code.

However, current tools provide diagrams like the one on the left that quickly
become as complicated as the program they’ re trying to depict.

The programmer can try to filter out what she doesn’ t want to see, but usually
it’ s easier for her pick up a pen and paper and redesign by drawing only the
parts she wants to see (like the diagram on the right).

Unfortunately, the computer can’ t help the programmer when she redesigns
with pen and paper – and I believe that it should.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 4

� �� ��# , ��# ��� �4 �+ ��	���+ �� ��� ������

�

) �����* * ��	�+ ������	� 3 ��� �5 ����
+ �����* 	����� �����+ �� �� ��

�

� ��2 ���+ �	����* �5 �	������ �* * ��� 2 � 	�+
���� ������	

�

# , �	�	
�" ��, ������ � �+ ��	���+ 	�
���� ������	! ����� ���+ ������� �5 ����
+ �����* 	! ���+ �, �� � ��, ��� �����* * ���
�� � � �����, ��� �����* � 	�+ �	���

I’d like to bring the computer back into this process by starting with two
observations.

First, programmers’ pen and paper diagrams are task-relevant – they draw the
parts of the program they want to change and the dependencies that are
involved, and leave out the rest.

Second, there’s a growing body of commonly used design moves called
refactorings – local, structural changes to the program that involve a few of
its related parts.

These observations led me to the thesis that if a diagramming tool understood
the refactorings the programmer wanted to make, it could

(1) draw relevant, task-specific diagrams and

(2) use those diagrams to help the programmer interactively explore the
program’s design.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 5

� ��� �������# ��� �� �� �	

6 � 7 �	 �� �� ��+ �	���

& � ������	��� ��$ � �* 	

' � �, �������+ �	���	�

8 � " * � � �* �����, ��
���� ������	

Stepping back for a bit, a redesign tool could potentially support the user in a
number of roles, because refactoring is a multi step process.

First, the tool can give the user a visual representation where it’ s easy to spot
opportunities for refactoring.

Second, the tool can diagnose design problems by looking for `bad smells’ or
`antipatterns’ , known patterns of design weakness like code duplication.

Third, the tool can show the user the results of proposed refactorings, allowing
them to chain together multiple refactorings to visualize new designs.

And finally the tool can verify that the refactorings preserve behavior and
implement them by changing the source code.

Choosing the actual refactorings – between steps two and three in this process –
is the most difficult step and remains up to the user.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 6

��������	� �� �� �	

6 � 7 �	 �� �� ��+ �	���

& � ������	��� ��$ � �* 	

' � �, �������+ �	���	�

8 � " * � � �* �����, ��
���� ������	

Dr. Jones addresses the first and third roles listed here.

The metaphor is that of a fellow programmer who knows the program you’ re
refactoring (although not what it does), can draw accurate diagrams of it, and
give the programmer guidance while refactoring.

It innovates by decoupling the steps of planning and implementing the
refactorings -- current tools transform the source immediately when the user
makes a refactoring decision.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 7

1 �����$ ����	

�

��������	! ������� ����� �����* * ��	����� � ���
�, � ���� ������ ������5 ��� �����*

�

��� ���� �+ ���$ �	�������� ������	������5 �

�

� �� 	����� � ���
�� ��� �����, ��+ �����* 	�
	�* � � ����+ ���� �5 ������ ��		�* � ��� � ��
���� ������	

I see three main contributions resulting from this research.

The motivating contribution is Dr. Jones, the tool I am developing that requires
two main innovations.

The first innovation is a knowledge base of refactorings for Java programs,
built from the perspective of a tool that assists the user in visual design
exploration.

The second innovation is a mechanism for keeping the contents of software
diagrams relevant across multiple refactorings by tracking the focus of
refactoring attention.

The rest of this talk will focus on my progress towards realizing this first
innovation.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 8

% �� ���

ü) ��$ � �* ���+ �# , �	�	

Ø - , ����	���� ��� ������.

�

# , ����������	 � ��� ������ / ���� �+ ���
0 �	�

�

���� ������

First I will describe what Dr. Jones knows about each individual refactoring for
Java.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 9

- , ����	���� ��� ������.

�

��	�� � � ��� �� , ������, ����* � ��5 �	�
� �����* �+ �	���! ��, �� ��* �����������
$ �, �5 ���

� � �5 ������* ��, �+ ������+ � ��� � � � ���

� � � ���� �������$ �	��� � �		����, �� �* * ���* ��, �+ 	

� � �� �� 	 � ������* ��, �+ 	����������+ �� �����

Briefly, a refactoring is a structural change to a program that improves its
design, without changing its visible behavior.

Common examples are moving a method, generalizing classes to a base class,
and encapsulating methods into a delegate.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 10

� �5 ��� ��, �+

Vehicle

milesTraveled:int

fuelConsumed:int

Engine

milesPerGallon():double

belongsTo:Vehicle

Vehicle

milesPerGallon():double

milesTraveled:int

fuelConsumed:int
Delegates to

Engine

milesPerGallon():double

belongsTo:Vehicle

Let’s look at the move method refactoring in detail, to illustrate what Dr. Jones
knows about a typical refactoring.

Suppose we decide that the miles per gallon of a vehicle is really a property of a
vehicle, and not its engine, to reduce coupling.

We refactor by moving the method to Vehicle, and leaving a skeleton method
behind in Engine that delegates to the new location.

What would Dr. Jones need to know to help me plan this refactoring?

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 11

- , ���+ ��	���������	�/ ���.

�� �� ��" * � �� �

��	����� ���	����	

������* �" * � �� �

� ��+ 	

In Dr. Jones, I represent a refactoring by four pieces of knowledge.

First, what are the obvious reasons not to perform the refactoring (the guards).

Second, how does the refactoring change Dr. Jones’ representation of the
program design and thus what is shown in its diagrams.

Third, does the refactoring suggest other refactorings that are likely to improve
the program design.

And finally, where are the places in the source that might have to be changed to
implement the refactoring.

I’ ll now examine these four pieces of knowledge in detail for the move method
refactoring.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 12

- , ����	�9 � �5 ��� ��, �+ � ������������	.

�� �� ��" * � �� �

��	����� ���	����	

������* �" * � �� �

: ����* ��� ��� �� �����������

: ������ ��	�� � ���

: ��	� �� �; ���������, ������� �

� ��+ 	

First, Dr. Jones can check for guards – obvious reasons that one wouldn’ t want
to do the refactoring.

In this case, Dr. Jones can check for name conflicts, and that you’ re not trying
to move a constructor.

Also a different set of rules apply for move method if the source and target
classes are related by inheritance.

Note that thesè guards’ don’ t completely check that the refactoring preserves
the program’s behavior (since that would involve much more difficult
analyses).

Rather these are more like sanity checks to help the programmer avoid
refactoring mistakes.

(Dr. Jones can remind the programmer to check the more difficuly safety
conditions when it’ s time to implement the refactorings. This runs the risk,
however, of allowing the programmer to plan unsafe refactorings with Dr.
Jones.)

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 13

- , ����	�9 � �5 ��� ��, �+ � ������������	.

�� �� ��" * � �� �

��	����� ���	����	

�� �� �
�� ��5 ����+ �� �����

�����
�1 �� 2 �* ��, �+ �	����� ��

������* �" * � �� �

: ����* ��� ��� �� �����������

: ������ ��	�� � ���

: ��	� �� �; ���������, ������� �

� ��+ 	

The impact on the design representation is straightforward (as we saw a few
slides ago in the move method example).

Dr. Jones copies the method signature from the source to the target and notes
that the old method delegates to the new location.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 14

- , ����	�9 � �5 ��� ��, �+ � ������������	.

�� �� ��" * � �� �

� �5 ���5 ����+ ���; �5 ����+ + ���* ��, �+ 	

� �5 ���5 ��� ��+ �+ �* ��, �+ 	

) ��5 �+ ���� � �		����	� �� ��* �* $ ��	<

��	����� ���	����	

�� �� �
�� ��5 ����+ �� �����

�����
�1 �� 2 �* ��, �+ �	����� ��

������* �" * � �� �

: ����* ��� ��� �� �����������

: ������ ��	�� � ���

: ��	� �� �; ���������, ������� �

� ��+ 	

Dr. Jones can make several design suggestions even for this seemingly
straightforward refactoring.

If the method is polymorphic in the source hierarchy, it’ s likely that the
programmer will want to express that polymorphism on the target hierarchy.

So we leave to-dos for the programmer to move the overriding and overridden
methods to appropriate places in the target hierarchy.

Also, if the method is overloaded with functions of the same name but different
signatures, then the programmer might want to move those as well.

Finally, if the method uses fields or methods in the source class, the
programmer will need to provide access to them (I.e., by encapsulating those
fields).

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 15

- , ����	�9 � �5 ��� ��, �+ � ������������	.

� �5 ��* ��, �+ �$ �+ 2

" * � � �* ����+ �� �������

1 ��5 ���� 	�	���	� �� ��* �* $ ��	<

�� �� ��" * � �� �

� �5 ���5 ����+ ���; �5 ����+ + ���* ��, �+ 	

� �5 ���5 ��� ��+ �+ �* ��, �+ 	

) ��5 �+ ���� � �		����	� �� ��* �* $ ��	<

��	����� ���	����	

�� �� �
�� ��5 ����+ �� �����

�����
�1 �� 2 �* ��, �+ �	����� ��

������* �" * � �� �

: ����* ��� ��� �� �����������

: ������ ��	�� � ���

: ��	� �� �; ���������, ������� �

� ��+ 	

Finally we can give some guidance to the programmer when he is ready to
tackle the source, like moving the method body to the target, implementing the
delegation in the source, and converting the uses of source members.

(Dr. Jones builds a cross reference of which methods use which other fields and
methods for use in these last two steps.)

Dr. Jones decouples the choices of the refactoring steps to take, and the actual
manipulation on the source to implement the refactorings.

In this way multiple alternatives can be more easily explored, and the hard
work of implementing the refactorings undertaken once an alternative is
chosen.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 16

= �����������	�4 	�	�# , �	�" ���* �����

� �+ ��� ������* � � �* ��������, ��
���� ������

�� �� ��" * � �� �

4 	����������	� �� ���� �+ ������, ��
� �����* �����		�	���, ������ ������
� ��� �		

��	����� ���	����	

� �5 ���, ��� �����* * �����9 � �2 	��� �$ �� � � �
���, ������ � ���������+ �����*

������* �" * � �� �

) ��5 ������ � 3 ��* �+ �+ �	���	� ��+ 	

Dr. Jones uses these four pieces of knowledge together to play its role as a
diagramming assistant.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 17

�

= ������� ��5 ��$ �, �5 �����	�� ��	��5 �+
�

= ����������	��* ��, ��	� �� �

�* �� � ��� � � ��� ������ 0 ���	��

��������	

�

- , ����, ������ �������	, � � + �� ��$ ��+ ���

�

= ������	, ����, �� 	����, ����	 � �	

�

� ���	��+ ����� ������	

�

- , �����	��, ���* � �� ������, ��	� �� �

I’d like to compare Dr. Jones’ knowledge about refactoring to that of another
research project, the Smalltalk Refactoring Browser developed at UIUC.

The Refactoring Browser was primarily concerned with giving the user a safe
and reliable tool – the user could trust it to know when a refactoring is
behavior-preserving, and if so to transform the source correctly.

Dr Jones on the other hand has knowledge that will give the user visual
feedback on the new designs generated by refactoring, prevent bad refactorings,
and suggest`follow-up’ refactorings.

These kinds of knowledge haven’ t been explicitly considered before in a
refactoring tool, and I believe my specifications of it represents a contribution
to refactoring research.

I also believe these two bodies of knowledge are complementary, and a tool
that integrates, for example, design diagnosis, design exploration and source
transformation would be a more complete solution and a fruitful direction for
future work.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 18

% �� ���

ü) ��$ � �* ���+ �# , �	�	

ü - , ����	���� ��� ������.

Ø # , ����������	 � ��� ������ / ���� �+ ���
0 �	�

�

���� ������

Next I am going to give an overview of what refactorings are included in the
knowledge base.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 19

� ��� �������7 ��$ 	

1 � � �# �

� � � % 7 �

� � : �� �

� % 7 �

= " �� ; � � 7 � ��

1 % �) % �� ; �� 1 % �) % ��

� : 1 �) �4 � �# � ; � >) % ��

� � : � � �� " ? � ; �) � 1 " �� " ? �

�� # � � �# @) �

The KB is structured around a set of refactoring verbs that can be applied to the
major program elements in Java.

This vocabulary was motivated by the desire to have a economical number of
actions that the user can apply to elements of the diagram, instead of a flat list
that would have to be learned and remembered.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 20

� ��� �������7 ��$ 	

�� ����# 2 � �

� ��; �� ��

� �� �� ; � � � �	�

1 �* � ; ��� �* �

= �+ �; � �5 ���

� �5 �

� ���* �

� �* �5 �

1 �����

� ��� +� ��, �+1 � �) �� � ���

The vocabulary also sets up a space of possible refactorings whose cases can be
filled in for a specific language (in this case Java).

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 21

� ��� �������7 ��$ 	

üüüü�� ����# 2 � �

üüüüüüüüüüüü� ��; �� ��

üüüüüüüüüüüü� �� �� ; � � � �	�

üüüüüüüüüüüü1 �* � ; ��� �* �

üüüüüüüüüüüü= �+ �; � �5 ���

üüüüüüüüüüüüüüüü� �5 �

üüüüüüüüüüüüüüüü� ���* �

üüüüüüüü� �* �5 �

üüüüüüüü1 �����

� ��� +� ��, �+1 � �) �� � ���

I have specified entries in the KB for each of these check marks in a semi-
formal language.

Most of the missing marks are cases that don’ t make sense in Java, [next slide]

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 22

� ��� �������7 ��$ 	

üüüü>>>�� ����# 2 � �

üüüüüüüüüüüü>� ��; �� ��

üüüüüüüüüüüü>� �� �� ; � � � �	�

>üüüüüüüüüüüü1 �* � ; ��� �* �

üüüüüüüüüüüü>= �+ �; � �5 ���

üüüüüüüüüüüüüüüü� �5 �

üüüüüüüüüüüüüüüü� ���* �

üüüüüüüü� �* �5 �

üüüüüüüü1 �����

� ��� +� ��, �+1 � �) �� � ���

I.e. hiding a package.

Creating and removing fields and methods aren’ t included because they don’ t
seem to be in the spirit of behavior preservation, and adding new functionality
is a separate concern.

The intention is to let programmers naturally express typical sequences of
refactorings they would use in practice.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 23

� ��� �������7 ��$ 	

üüüü>>>�� ����# 2 � �

üüüüüüüüüüüü>� ��; �� ��

üüüüüüüüüüüü>� �� �� ; � � � �	�

>üüüüüüüüüüüü1 �* � ; ��� �* �

üüüüüüüüüüüü>= �+ �; � �5 ���

üüüüüüüüüüüüüüüü� �5 �

üüüüüüüüüüüüüüüü� ���* �

üüüüüüüü� �* �5 �

üüüüüüüü1 �����

� ��� +� ��, �+1 � �) �� � ���

� ��� ���A �B & ! ���������	�A �C (! �" �� ��" ���� � ���A �& B

We can compare the coverage of Dr. Jones to the catalog in Fowler’s 1999
book and a leading refactoring CASE tool.

Although we’ re comparing apples and oranges, in terms of expressiveness, Dr.
Jones has a significant fraction of the Fowler’s refactorings collected from
practice and more than a source-transformation-only CASE tool.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 24

% �� ���

ü) ��$ � �* ���+ �# , �	�	

ü - , ����	���� ��� ������.

ü # , ����������	 � ��� ������ / 0

Ø ���� ������

To bring the two main parts of the talk together I’ ll present a scenario that
shows Dr. Jones’ body of knowledge in action. simulte

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 25

�� ������

Calendar

add(Date,Time,Time,String,int):

REGULAR:int

TODO:int

ALLDAY:int

date

start

end

desc

type

Date

Time

Time

String

int
*

*

*

*

*

We start with a class that keeps a calendar of appointments.

The information for each appointment is kept in fields of arrays (one for the
date, one for the start time, etc.)

Appointments can be made in three types: regular, to-dos, and and all-day
(indicated by a numeric type code).

The programmer would like to refactor this to create an extensible abstraction
for an Appointment.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 26

�� ������

Calendar

add(Date,Time,Time,String,int):

appointments:Appointment[]

REGULAR:int

TODO:int

ALLDAY:int

*

� �� �� 	 � ����� ��� + 	

Appointment
date:Date

start:Time

end:Time

desc:String

type:int

appointments

The first step is to encapsulate the array fields into a new Appointment class.

Dr. Jones would ask the user to name the new class, and to choose a container
for the aggregation (in this case an array).

It would then change the program representation as necessary and diagram the
new design, including replacing the multiple aggregation edges with a single
new one.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 27

�� ������

Calendar

add(Appointment):void

appointments:Appointment[]

REGULAR:int

TODO:int

ALLDAY:int

*

� �� �� 	 � ����) ���* ����	

Appointment
date:Date

start:Time

end:Time

desc:String

type:int

appointments

Now that we have an Appointment class, it makes sense to replace the multiple
parameters to add() with a single Appointment parameter.

The user does this with the encapsulate parameters refactoring.

Since Dr. Jones knows where the add() method is called in the original
program, it can tell the programmer where to change the calling syntax later.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 28

Appointment
date:Date

start:Time

end:Time

desc:String

type:int

REGULAR:int

TODO:int

ALLDAY:int

�� ������

Calendar
add(Appointment):void

*

� �5 ��� ��� + 	

appointments

Now the user would like to make the appointment-type-specific behavior
explicit in the class hierarchy.

The user prepares for this by moving the type code fields to the Appointment
class.

[include something about moving methods in Calendar here, or come up with
an example.]

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 29

Appointment
date:Date

start:Time

end:Time

desc:String

�� ������

Calendar
add(Appointment):void

*

� �� �� 	 � ����# 2 � ��1 �+ ������ $ � � �		�	

appointments

Regular Todo AllDay

The user can then encapsulate the type codes of Appointment into subclasses.

Things look pretty good, until she realizes that the user of the calendar might
want to change the type of an appointment.

Objects can’ t change class in Java, so this creates a problem.

Here she can use Dr. Jones’ ability to explore alternatives to back up and try a
different refactoring.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 30

Appointment
date:Date

start:Time

end:Time

desc:String

type:AppointmentType

�� ������

Calendar
add(Appointment):void

*

% �� 	�3 � �� �� 	 � ����# 2 � ��1 �+ ����������

appointments

type

!
AppointmentType

Regular Todo AllDay

Encapsulating the type codes in a separate class avoids this probem.

An Appointment can change its type dynamically by reassigning its
AppointmentType instance.

We can compare this design to the original to see the improvement [flip slides].

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 31

�� ������

[slide copied here to illustrate improvement in design]

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 32

0 �� � ����� �� 	�# ��� � ���

�
�
5
�
��
�
�
+
�
��
��

) �	������� � ��

Before concluding, I wanted to bring the talk back to the issues that got me
started looking at refactoring, that of keeping the diagrams simple and relevant
while redesigning software.

This is the goal of focus tracking, and I see it as one of Dr. Jones’ major payoffs
to the user.

The KB I’ve described will be a major component of the focus tracking
mechanism, since it knows what program elements are involved in the current
refactoring and which ones are likely to be further refactored.

The focus tracking mechanism will use this information to render the elements
at appropriate levels of detail, shown here.

For instance, it could show some historical context by showing elements
refactored in the past at a low level of detail.

The currently refactored elements will get the highest level of detail.

Likely future refactorings will also get more detail, but since we can’ t predict
the user’s next actions exactly, the drop off is quick.

The specifics of this mechanism remain future work in my research.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 33

1 ��� � 	���

ü) ��$ � �* ���+ �# , �	�	

ü - , ����	���� ��� ������.

ü # , ����������	 � ��� ������ / 0

ü ���� ������

Today I’ ve presented an overview of my research progress on Dr. Jones, an
interactive refactoring tool for Java programs.

I’ve described the four kinds of design exploration knowledge I have specified
for each of Dr. Jones’ 50 refactorings.

And I’ve also described a scenario that will drive the next phases of my
research.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 34

���� 	���+ �� �� �	����	

ü C (�� ��� ������	��� �� ���+

ü ���� 2 	�	���+ �������* * ����" ���	�� � � ��

�

�� �������� ��� ������	�" * � � �* ����+

�

� �� 	�����# ��� � ���

�

� �* �������� ��� ������	

�

� 5 �� �����

The tasks I’ ve completed are the specification of 50 refactorings for Dr. Jones
in a semi-formal language, and the infrastructure to analyze and flexibly
diagram existing Java programs.

Next I plan to implement the set of refactorings used in the scenario and
understand what focus tracking would be for the scenario.

This in turn will drive work on a more general focus tracking mechanism, and
the implementation of the remaining refactorings I have specified.

In the final phase of my research I want to evaluate Dr. Jones by obtaining user
reactions and feedback.

MIT Artificial Intelligence Lab October 24, 2002

Mark A. Foltz mfoltz@ai.mit.edu
Thesis Committee Meeting 35

Before breaking for discussion I’ ll give you a tour of the prototype’s current
capabilities.

