
Submitted To UIST 2002 1

InfoMapper: Coping With the Curse of Dimensionality in
Information Visualization

Mark A. Foltz
MIT Artificial Intelligence Laboratory

200 Technology Square Room 808
Cambridge, MA USA 02139

mfoltz@ai.mit.edu

Audrey Lee
Department of Computer Science

Wellesley College
106 Central Street

Wellesley, MA 02481 USA
alee@wellesley.edu

ABSTRACT

Two goals of information visualization are the creation of
automated and easily perceptible information displays. How-
ever, visualization tools are often faced with thecurse of di-
mensionality: there are many more kinds of variation in the
information than visual dimensions in the display medium.
We have developed InfoMapper, an automated visualization
system that supports the highly interactive exploration of the
information space. InfoMapper allows the user to select and
remove information dimensions on demand, so that the user
is freed to focus on finding the information most relevant to
his task, and can let the tool find a perceptible way to visual-
ize that information.

InfoMapper is motivated by the Query by Attention frame-
work for visual filtering interfaces. Query by Attention in-
terfaces exploit the properties of the human visual system
to allow the user to rapidly and effortlessly query informa-
tion by controlling visual attention, instead of manipulating
an interface. Here, we present a motivating scenario for the
InfoMapper, the constraint satisfaction algorithm underlying
the system, and discuss its implementation.

KEYWORDS: knowledge-based information design, percep-
tual user interfaces, information visualization, decision-support
interfaces, sensemaking interfaces

INTRODUCTION

Two goals of information visualization are the creation of
automated and easily perceived information displays. Au-
tomating the visualization process spares the user the task of
information design, so he can focus on his goals for explor-
ing the information. Effective visualizations are also easily
perceived: they engage our inherent and specially tuned ca-
pabilities for visual perception, so that interpreting the infor-
mation becomes an almost effortless perceptual task.

However, often information designers face thecurse of di-
mensionality: there are many more kinds of information in
the data to be displayed than visual dimensions in the dis-
play medium. Adding more and more visual variations to
convey all the information results in a visualization too com-
plicated to interpret easily, forcing the choice of a subset of
information to be shown. But, the designer may not know
ahead of time which subset to show; it depends on the user’s
context, goals, and the particular content of the information.

In these situations, we would like to give the user the free-
dom to choose the subset of information to view, without re-
quiring him to design a new visualization for each subset. To
meet this challenge we have developed InfoMapper, a system
that creates automated, easily perceived visualizations while
allowing the user to rapidly explore subsets of information
attributes. (Attributes are fields describing properties of the
items displayed, such asTitle, Year, andWon-An-Oscar?for
a movie.) The user can make rapid decisions about which in-
formation attributes are relevant and irrelevant, and the sys-
tem automatically creates visualizations with the chosen in-
formation in response. InfoMapper is thus well-suited for sit-
uations where the information attributes relevant to the user
are not known ahead of time, such as when purchasing a car
or choosing a movie.

The system uses a novel constraint-satisfaction algorithm that
automatically creates visualizations as the user adds and re-
moves attributes from the display. The system does so by
mapping the chosen attributes to the available visual dimen-
sions in the display, in accordance with constraints motivated
by the Query By Attention framework [5]. It also tries to
keep the meaning of display elements consistent as the se-
lected set of attributes is changed. InfoMapper is capable of
producing scatterplot-style designs such as the ones in Figure
1.

Overview of Paper
First, we present background information on Query by At-
tention visual filtering interfaces, which motivated the devel-
opment of InfoMapper. Then, we illustrate InfoMapper by a
scenario of a user exploring a multi-attribute data set of cars
he might want to purchase. Next, we present our constraint-



Submitted To UIST 2002 2

satisfaction algorithm that underlies the InfoMapper system.
Finally, we discuss the implementation and usage features of
InfoMapper.

BACKGROUND: QUERY BY ATTENTION
InfoMapper is motivated by the Query By Attention frame-
work for visual information filtering interfaces. The Query
By Attention framework proposes using visual dimensions
like shape, color, and position that are known to support ef-
ficient visual search: subjects can find matching items in a
display rapidly, regardless of the number of distracting ele-
ments. To develop this framework, we surveyed the scientific
literature on visual search [11] and developed an information
design method based on our results.

Some of the visual dimensions we studied include:

Position. A user can control visual attention to search within
a spatially delimited region, making it appropriate to map to
the X- or Y-axis attributes that are queried by range.

Color. Color is widely used to distinguish symbols in maps.
The colors at the extrema of opponent processing [7, p. 113]
(red/green, blue/yellow, and black/white) are considered good
candidates for efficient search. Experimental results has shown
that search for a color target among as many as nine distrac-
tor colors is efficient if the colors are spread far apart in color
space [9].

Shape. Some determining features for distinguishable shapes
include line termination (presence/absence), closure, holes,
and possibly intersection [11, pp. 31-4]. Most experiments
described report efficient search with homogeneous distrac-
tors, so a conservative approach would map shapes likeX
andOto a binary attribute. Orientation also supports efficient
search, for example using bars oriented at 0 or 90 degrees.

Depth. Pictorial depth cues such as shading, occlusion, or
shadows can support efficient search [11, p. 39]. This cue
is best used for binary features, as search in more than two
depth planes is less likely to be efficient.

The Query By Attention method maps information types to
visual dimensions like these to permit visual searches for in-
formation that are perceptually easy. Query By Attention
is an alternative to standard database query interfaces. In
database interfaces, the user must specify criteria, submit the
query, and wait for tabular results before querying again. In-
stead, in Query by Attention interfaces, the user can find the
matching items at a glance, and if he wants to change the
parameters of the query, he simply attends to a different set
of properties. Information exploration is done by controlling
visual attention, without manipulating an interface at all.

SCENARIO
InfoMapper supports multi-criteria decision processes, like
purchasing a car, where the user wants to find a set of items
matching his criteria, but doesn’t know which criteria at first.

This is why it is crucial to support the incremental explo-
ration of the data space. InfoMapper is also particularly suited
for situations that have both quantitative and qualitative cri-
teria, where the program can use its flexibility in mapping
visual dimensions by data type.

Our first scenario shows a user who wishes to learn about
cars he would be interested in purchasing. When he starts,
he has a general idea about what he would like in a car, but
does not have a fixed set of criteria for choosing one. Our
example uses a data set of recent car models with nine at-
tributes, more that the maximum of six visual dimensions
that the InfoMapper can render. (In this case, over 180,000
attribute-dimension mappings are possible).

We use this scenario to illustrate the four goals of our con-
straint satisfaction algorithm. The detailed interface actions
that play out this scenario are discussed in the implementa-
tion section.

Goal #1: Produce a reasonable initial visualization. Given
no information from the user about the relative importance
of the attributes, InfoMapper tries to create a default visual-
ization using as many of the attributes as it can. The initial
visualization created for a data set of recent car models is
shown in Figure 1, top. Here, InfoMapper has mapped all
six visual dimensions, creating a visualization that shows the
maker, type, passenger capacity, number of cylinders, cargo
capacity, and weight for each car.

For a variety of reasons believe it is important to begin with
an initial visualization, even if imperfect, rather than a blank
screen. This approach allows the user to begin learning about
the information without any effort (for example, how many
items there are in the data set); it provides an initial visualiza-
tion that may suggest where to go next, or surprise the user
with what it presents; and the initial visualization may turn
out to be close to what the user wants.

In this case, by examining the initial visualization (Figure 1
top), our user finds the car with the largest passenger capac-
ity is the Ford Excursion, the top-most plus symbol in the
display.

Goal #2: Allow incremental exploration. In this scenario,
although information about cargo capacity and weight is in-
teresting to our user, he cares most about the cars’ miles per
gallon and price. He drags those two attributes from thenot-
visualizedlist to thevisualizedlist, and removes car type and
passenger capacity (which he decides are not as relevant at
this point).

The display updates to reflect his preferences, as in Figure
1, bottom left. Miles per gallon is assigned to the X axis,
and price to the Y axis. The attributes cargo capacity and
weight are no longer used, since the algorithm can’t find a
way to render them in the display, so they are moved to the
not-visualized list.



Submitted To UIST 2002 3

Figure 1: Top: The initial visualization in the car-buying scenario. The display area is divided into a grid of regions, in
which the X axis is partitioned by car type, and the Y axis by passenger capacity. Within each region, cargo capacity and
weight are plotted on the X and Y axes. Bottom left: The display after the user has chosen miles per gallon and price as
preferred attributes, and removed passenger capacity and type. Bottom right: The display after the user has restored car
type.



Submitted To UIST 2002 4

This illustrates another goal of our algorithm, which is to al-
low the user to tell the system what is important in the infor-
mation and have the system design a visualization that con-
veys the relevant information.

Goal #3: Update the display stably. Now suppose that the
user does want to see car type as well as miles per gallon,
price, car maker, and number of cylinders. When he adds it,
the system does not change the meaning of color or shape;
instead, it subdivides an axis to render the new attribute, as
in Figure 1, bottom right.

This illustrates another goal of our algorithm: to keep the
mapping of existing dimensions as stable as possible even as
attributes are added and removed from the visualization. The
user has invested some effort in learning which colors and
shapes map to which values; reassigning these will confuse
the user and throw away what he has learned about these as-
sociations, and hence should be avoided whenever possible.

Goal #4: Add new constraints easily. Our example uses po-
sition, color hue, and shape type to convey information about
the data. However, there are many more ways to present in-
formation we would like to make available to the user. For
example, a natural way to convey the capacity of a car would
be to vary the size of its icon’s shape.

Increasing the vocabulary of attribute types and visual di-
mensions requires adding new design knowledge to the sys-
tem, but ideally should not significantly change the under-
lying mechanism for satisfying the constraints, or require
rewriting all of the existing constraints in the system.

ALGORITHM
Our constraint satisfaction algorithm is designed to fulfill
those four goals. Given lists of attributes to visualize and vi-
sual dimensions, it finds a one-to-one mapping between them
that satisfies the constraints.

InfoMapper divides the visual design space into a set of chan-
nels. Conceptually, a channel is a stream of human visual
processing, that can be filtered along a number of visual di-
mensions, such as color hue.

Table 1 summarizes the visual dimensions for which con-
straints have been written; InfoMapper can render X and Y
position, X and Y regions1, color hue, and shape type.

Information attributes are assigned one of six types: real, in-
teger, date, enumerated (chosen from a fixed set of values),
binary, and text (arbitrary text, which is not mapped).

To find the mapping, the algorithm uses a set of design con-
straints devised by the authors to match the design method
proposed in the Query By Attention framework [5]. The con-

1InfoMapper can subdivide the X and Y axes to create a grid of regions,
and sort data items into those regions according to the values of two discrete
attributes.

Channel Dimensions
Space X position

Y position
X region
Y region

Color Hue
Saturation
Value

Shape Type
Size
Texture

Table 1: Visual channels and dimensions.

straints try to produce designs that take advantage of the in-
herent filtering capabilities of the human visual system.

Constraint Types
InfoMapper uses seventeen constraints to determine the va-
lidity of attribute-dimension mappings. These constraints are
divided into four kinds:

Dimension-attribute compatibility constraints. These constraints
ensure that visual dimensions convey information appropri-
ate to their type. Since color hues and shape types are cho-
sen from fixed sets, they are constrained to map to enumer-
ated information types. The use of X and Y regions creates
a discrete grid over the display space and so they are also
constrained to map to enumerated types. X and Y position
must be mapped to real-valued types to fully determine the
position of each information item.

Dimension-dimension compatibility constraints. These require
that dimensions which overlap in perceptual space are not
both used in the display. These constraints are appropriate
when using both dimensions would prevent the user from ac-
curately perceiving the underlying information values. For
example, we use this constraint to prevent color value and
color saturation from both being used in a mapping, since a
change in either varies the apparent intensity of an underly-
ing hue.

Dimension-dimension dependencies. Dimension-dimension
dependencies ensure that a mapping fully determines the ap-
pearance of each data item for rendering. For example, if
the algorithm chooses to subdivide the display space into re-
gions, it is still necessary to determine the exact position of
the item within each region. To make sure this is the case, X
region depends on X position, and Y region on Y position.

Mapping consistency constraints. Mapping consistency con-
straints keep the meanings of some visual dimensions the
same between updates to the mapping. We constrain color
hue and shape type in this way, so the user does not have
to repeatedly re-learn what shape and color represent in the
display.



Submitted To UIST 2002 5

Adding new constraints. Constraints are modular in InfoMap-
per, in keeping with Goal #4. For example, the authors found
that occasionally an enumerated attribute with more that five
values would be mapped to the five shape types available,
creating an ambiguous display. To resolve this, we added
a new dimension-attribute compatibility constraint that pre-
vents this from occurring. No changes to other constraints
were necessary.

Constraint Satisfaction Algorithm
MAP, our algorithm for finding attribute-dimension mappings,
takes as inputs a list of visual dimensions, a list of informa-
tion attributes, a set of constraints like those described above,
and the current attribute-dimension mapping. The output
is a new attribute-dimension mapping that satisfies the con-
straints, which is used by InfoMapper to render the current
data set.

The input list of attributes is sorted by the user’s preferences,
with the explicitly preferred attributes appearing first (i.e.,
those the user has dragged from the not-visualized to visu-
alized list). The input list of visual dimensions is sorted by
a preference ordering intended to produce more pleasing de-
signs. For example, color is assigned before shape because
overlapping items of different colors are more easily per-
ceived (through alpha blending) than overlapping items of
different shapes.

MAPproceeds as follows.

ALGORITHM MAP(D,A,S,M)
INPUTS: A list of unmapped visual dimensions D

A list of unmapped information attributes A
A set of constraints S
The current mapping M, initially empty

OUTPUT: A one-to-one mapping M(a) = d of attributes
to dimensions

for each dimension d in D
for each attribute a in A

if (a,d) is not
dimension-attribute compatible, then

continue A loop;
endif
for each dimension d’ in M

if (d,d’) is not
dimension-dimension compatible, then

continue A loop;
endif

endfor
// All the constraints relevant to (a,d) are
// satisfied at this point.
// Add (a,d) to the mapping.
M’ = M + (a,d)
A’ = A - a
D’ = D - d
for each dimension d’ in D,

if d’ depends on d and is not in M’, then
move d’ to the beginning of D’

endif
endfor
return MAP(D’,A’,S,M’)

endfor

endfor
return M

Although it is exponential in complexity, in practice it finds
solutions quickly (under one second on a current worksta-
tion). This is in part because it is a satisficing, not an opti-
mizing algorithm; it finds the first mapping consistent with
the constraints, not the mapping with the most elements (or
best by some other quality measure).

Occasionally, a subproblem is over-constrained: A and D are
nonempty, but no further mappings can be made. This pre-
vents poor design choices from being made, but the user may
want the poor design anyway because it has the information
he wants. In the future, we plan to enable some constraints to
be soft, so that they can be lifted when the problem becomes
over-constrained in this way.

Another algorithm,MAP-UPDATE, updates the current map-
ping when the user adds or removes an attribute from A. It
initializes the new mapping with dimensions from the old
mapping that are constrained to be consistent between up-
dates. These consistency constraints are intended to carry
over the meanings of color and shape associations the user
has already learned. It then invokesMAPto fill in the rest of
the mapping.

ALGORITHM MAP-UPDATE(D,A,M,S)
INPUTS: A sorted dimension list D

An updated, sorted attribute list A
The current mapping M(a) = d
A set of constraints S

OUTPUT: A one-to-one mapping M(a) = d of attributes
to dimensions

M’ = {} // an empty mapping
for each dimension d in M

if d is to be kept consistent, then
a’ = Mˆ-1(d)
if a’ is in A, then

M’ = M’ + (a’, d)
A = A - a’
D = D - d

endif
endif

endfor
return MAP(D,A,S,M’)

IMPLEMENTATION
InfoMapper is written in Java. It takes as input comma-
separated text files containing the data to be visualized; mul-
tiple files may be visualized at once on the InfoMapper vir-
tual desktop. When a file is opened, its contents are parsed
and each field is categorized into one of the attribute types.
The values of each attribute are analyzed to guess the best at-
tribute type to use (though the user can override this choice).
Note that the system requires at least two real-valued at-
tributes in the data set, to fully determine the (x,y) position
of each data item.



Submitted To UIST 2002 6

Once the file is parsed, theMAPalgorithm is run to find an
initial attribute-dimension mapping and the display rendered.
The axes are labeled and marked with “logical” tick marks
and values, i.e. with numeric increments like 2, 2.5, 5, or 10
commonly used in charts and graphs. A legend is placed at
the right hand side of the display.

The user selects and removes attributes from the display in a
direct-manipulation fashion, by dragging attributes between
the visualized and not-visualized lists at the lower right of
the display.

The user can also interact with the data directly. Moving
the mouse over an item produces a details-on-demand popup
window, as in Figure 2. The user can customize the con-
tents of this window by checking off a list of attributes to
include, or by writing a custom HTML format string. The
format string contains tokens which are substituted with val-
ues from the moused-over data item. The user can also click
and drag to create a rectangular selection box, which pops up
a a sortable table in a separate window with the enclosed data
(Figure 3).

Figure 2: A custom details-on-demand window for the
car visualization.

Figure 3: A pop-up sortable table of selected data.

CONCLUSIONS
Related Work
There is a rich tradition of work that articulates principles for
mapping data variation to ink variation, such as [10] and [3].
Work on automated visualization systems aims to capture
some of those principles in systems that automatically cre-
ate effective visualizations [1, 8, 6]. Our work extends pre-
vious work by allowing the highly interactive exploration of
the space of information dimensions. The algorithm allows

the user the freedom to choose which information is relevant,
when there are too many information dimensions to visualize
at once. We also contribute information design constraints
grounded in experimental results from visual psychology that
suggest which visual channels that support effective visual
search. These channels permit almost-instantaneous filtering
of display items based on visual properties such as shape,
color, and position.

Another approach is to reduce the dimensionality of the data
with statistical or clustering techniques such as clustering or
principal-components analysis. InfoMapper currently does
not compute dimension-reducing statistics, but they are com-
patible with our algorithm. If these statistics are available as
attributes derived from the original data, and the user decides
they are useful, the derived attributes can be rendered instead
of the original ones. It would be interesting to apply these al-
gorithms automatically as part of the constraint satisfaction
process, for example to allow a real valued attribute to map
to a discrete shape-type by clustering the values.

Future Work
We intend to conduct a usability study of InfoMapper. The
particular hypotheses we would like to address are:

1. Do users understand InfoMapper’s conceptual model, i.e.
does the system behave predictably and intuitively when
users select or reject attributes?

2. Does the system support multi-criteria decision making,
such as a purchasing decision?

3. Do users prefer the system to a conventional, text-based
database query interface for such a task?

We would also like to enrich the vocabulary of visual dimen-
sions available to render information. Our current system can
render only fixed set of color hues and shapes. Texture, orien-
tation, and motion are all visual properties that support rapid
visual search. Color value, color saturation, and shape size
can also convey information when rapid search is not as im-
portant (since they may confound other, searchable proper-
ties). Our extensible constraint algorithm supports this kind
of incremental evolution of the InfoMapper’s capabilities.

However, simply adding more visual dimensions may not
be the best way to render more information; cognitive con-
straints ultimately limit the complexity and interpretability
of visualizations. Adding more visual channels to the palette
does increase the flexibility of the algorithm and the variety
of possible displays.

An alternative is to allow multiple, spatially distinct views of
the same data. This is another route to coping with the curse
of dimensionality, at the expense of introducing multiple dis-
play areas which can’t be attended simultaneously. However,



Submitted To UIST 2002 7

techniques like multiple view brushing [4, 2] can perceptu-
ally re-link the views to show data correlations in multiple
displays.

Summary
We have described an algorithm and its implementation for
addressing the curse of dimensionality problem in informa-
tion visualization: when there are more kinds of variation in
the information than visual channels to display them. Our
algorithm produces a reasonable initial visualization, allows
the user to explore the information space by selecting and
removing information attributes, and tries to maintain the
meaning of the mapping when possible. The algorithm com-
bines design knowledge about how to render different in-
formation types effectively with the user’s preferences about
what information to include and remove. InfoMapper lets the
user focus on choosing the information relevant for his data
exploration and decision-making tasks, instead of designing
visualizations.

ACKNOWLEDGMENTS
The authors thank Randy Davis for detailed comments on
a draft of this paper and the MIT AI/LCS Project Oxygen
partners for sponsoring this research.

REFERENCES
1. AHLBERG, C. Spotfire: An information exploration

environment.SIGMOD Record 25, 4 (December 1996),
25–29.

2. BECKER, R. A., AND CLEVELAND , W. S. Brushing
scatterplots.Technometrics 29, 2 (1987).

3. BERTIN, J. Semiology of Graphics: Diagrams, Net-
works, Maps [orig. Semiologie Graphique]. University
of Wisconsin Press, Madison, WI, 1983. Translated by
William J. Berg.

4. DERTHICK, M., KOLOJEJCHICK, J.,AND ROTH, S. F.
An interactive visual environment for exploring data. In
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST ’97)(1997), pp. 189–
198.

5. FOLTZ, M. A., AND DAVIS , R. Query by attention:
Visually searchable information maps. InProc. Fifth
International Conference on Information Visualisation
(London, 2001).

6. MACKINLAY , J. Automating the design of graphical
presentations of relational information.ACM Transac-
tions on Graphics 5, 2 (April 1987), 110–141.

7. PALMER , S. E. Vision Science: Photons to Phe-
nomenology. The MIT Press, Cambridge, MA, 1999.

8. ROTH, S. F., KOLOJEJCHICK, J., MATTIS, J., AND

GOLDSTEIN, J. Interactive graphic design using auto-
matic presentation knowledge. InProceedings of CHI

’94: Human Factors in Computing Systems(Boston,
Massachusetts, 1994), pp. 112–117.

9. SMALLMAN , H. S.,AND BOYNTON, R. M. Segrega-
tion of basic color in information displays.Journal of
the Optical Society of America A 7, 10 (1990), 1985–
1994.

10. TUFTE, E. R. Envisioning Information. Graphics
Press, Cheshire, Connecticut, 1990.

11. WOLFE, J. M. Visual search. InAttention, H. Pashler,
Ed. University College London Press, London, 1996.


