
Early Processing in Support of Sketch Understanding?

Tevfik Metin Sezgin+, Thomas Stahovich#, Randall Davis+
+MIT Artificial Intelligence Laboratory; # CMU Deptarment of Mechanical

Engineering

Massachusetts Institute of Technology,
Cambridge MA 02139, USA,
mtsezgin@ai.mit.edu ,

stahov@andrew.cmu.edu ,
davis@ai.mit.edu ,

Home page:http://www.ai.mit.edu/people/mtsezgin/sezgin.html
Home page:http://www.me.cmu.edu/faculty1/stahovich/stahovich.html

Home page:http://www.ai.mit.edu/people/davis/davis.htm

Abstract. Freehand sketching is a natural and crucial part of everyday human
interaction, especially important in design, yet is unsupported by current design
automation software. We are working to combine the flexibility and ease of use
of paper and pencil with the processing power of a computer, to produce a design
environment that feels as natural as paper, yet is considerably smarter. One of
the most basic steps in accomplishing this is converting the original digitized pen
strokes in the sketch into the intended geometric objects. In this paper we describe
an implemented system that combines multiple sources of knowledge to provide
robust early processing for freehand sketching.

1 Introduction

Freehand sketching is a familiar, efficient, and natural way of expressing certain kinds
of ideas, particularly in the early phases of design. Yet this archetypal design behavior is
largely unsupported by design software, which has for the most part aimed at providing
services in the later phases of the design process. As a result designers either forgo tool
use at this stage or end up having to sacrifice the utility of freehand sketching for the
capabilities provided by the tools. When they move to a computer for detailed design,
designers usually leave the sketch behind and the effort put into defining the rough
geometry on paper is largely lost.

We are working to provide a system where users can sketch naturally and have the
sketches understood. By “understood” we mean that sketches can be used to convey to
the system the same sorts of information about structure and behavior as they commu-
nicate to a human engineer.

Such a system would allow users to interact with the computer without having to
deal with icons, menus and tool selection, and would exploit direct manipulation (e.g.,
specifying curves by sketching them directly, rather than by specifying end points and
control points). We want users to be able to draw in an unrestricted fashion, unlike
? In Submission to UBICOMP 2001

Graffiti. It should, for example, be possible to draw a rectangle clockwise or coun-
terclockwise, or with multiple strokes. Even more generally, the system, like people,
should respond to how an object looks (e.g., like a rectangle), not how it was drawn.
This is unlike Graffiti and other gesture-based systems such as [10], and [15] where
constrained pen motions like an L-shaped stroke, or a rectangular stroke drawn in a par-
ticular fashion is used to indicate a rectangle. This will, we believe, produce a sketching
interface that feels much more natural.

The work reported here is part of our larger effort aimed at providing natural in-
teraction with design tools. That larger effort seeks to enable designers to interact with
automated tools in much the same manner as they interact with each other: by informal,
messy sketches, verbal descriptions, and gestures. That system uses a blackboard-style
architecture [7], combining multiple sources of knowledge to produce a hierarchy of
successively more abstract interpretations of a sketch.

Our focus in this paper is on the very first step in the sketch understanding part of
that larger undertaking: interpreting the pixels produced by the user’s strokes to produce
low level geometric descriptions such as lines, ovals, rectangles, arbitrary polylines,
curves and their combinations. Converting from pixels to geometric objects is the first
step in interpreting the input sketch. It provides a more compact representation, and sets
the stage for further, more abstract interpretation (e.g., interpreting a jagged line as a
symbol for a spring).

2 The Sketch Understanding Task

Sketch understanding overlaps in significant ways with the extensive body of work on
document image analysis generally (e.g., [2]) and graphics recognition in particular
(e.g., [17]), where the task is to go from a scanned image of, say, an engineering draw-
ing, to a symbolic description of that drawing.

Differences arise because sketching is a realtime, interactive process, and we want
to deal with freehand sketches, not the precise diagrams found in engineering drawings.
As a result we are not analyzing careful, finished drawings, but are instead attempting
to respond in real time to noisy, incomplete sketches. The noise is different as well:
noise in a freehand sketch is typically not the small-magnitude randomly distributed
variation common in scanned documents. There is also an additional source of very
useful information in an interactive sketch: as we show below, the timing of pen motions
can be very informative.

Sketch understanding is a difficult task in general as suggested by reports in previous
systems of a recognition rate of 63%, even for a sharply restricted domain where the
objects to be recognized are limited to rectangles, circles, lines, and squiggly lines (used
to indicate text) [10].

Our domain–mechanical engineering design–presents the additional difficulty that
there is no fixed set of shapes to be recognized. While there are a number of traditional
symbols with somewhat predictable geometries (e.g., symbols for springs, pin joints,
etc.), the system must also be able to deal with bodies of arbitrary shape that include
both straight lines and curves as we illustrate below. As consequence, accurate early

processing of the basic geometry–finding corners, fitting both lines and curves–becomes
particularly important.

3 System description

Sketches can be created in our system using any of a variety of devices that provide
the experience of freehand drawing while capturing pen movement. We have used tra-
ditional digitizing tablets, a Wacom tablet that has an LCD-display drawing surface (so
the drawing appears under the stylus), and a Mimio whiteboard system. In each case
the pen motions appear to the system as mouse movements, with position sampled at
rates between 30 and 150 points/sec, depending on the device and software in use.

In the description below, by a single stroke we mean the set of points produced
by the drawing implement between the time it contacts the surface (mouse-down) and
the time it breaks contact (mouse-up). This single path may be composed of multiple
connected straight and curved segments (see, Fig. 1).

Our approach to early processing consists of three phasesapproximation, beautifi-
cation, andbasic recognition. Approximation fits the most basic geometric primitives–
lines and curves–to a given set of pixels. The overall goal is to approximate the stroke
with a more compact and abstract description, while both minimizing error and avoid-
ing over-fitting. Beautification modifies the output of the approximation layer, primarily
to make it visually more appealing without changing its meaning, and secondarily to
aid the third phase, basic recognition. Basic recognition produces interpretations of the
strokes, as for example, interpreting a sequence of four lines as a rectangle or square.
(Subsequent recognition, at the level of mechanical components, such as springs, and
pin joints is accomplished by another of our systems [1]).

3.1 Stroke Approximation

Stroke processing starts by looking for vertices, i.e., points where there is a noticeable
change in orientation. We use the example in Fig. 1 below as a motivating example of
what should be done in vertex the detection phase.

Fig. 1.The stroke on the left contains both curves and straight line segments. The points we want
to detect in the vertex detection phase are indicated with large dots in the figure on the right. The
beginning and the end points are indicated with smaller dots.

Finding Vertices Vertex localization is a frequent subject in the extensive literature
on graphics recognition (e.g., [14] compares 21 methods). These methods are not ap-
plicable for our purposes because they produce a simple piecewise linear fit (i.e., a
polygonalization) of the stroke. The algorithm in [5], for example, while fast and accu-
rate for piecewise linear strokes, would produce a piecewise linear fit to all of Fig. 1,
including the curved section. We want instead to fit line segments only to the straight
sections of the sketch and fit curves where the stroke is curved.

We accomplish this by taking advantage of the interactive nature of sketching, com-
bining information from both direction change and speed data.

Direction change
The first step in detecting vertices based on the direction change is computing the di-
rection change. Point to point direction change is far too noisy to be informative (even
in clean, scanned engineering drawings). Freehand sketches are more difficult still,
because of the greater noise, the relative paucity of data points, and because, unlike
scanned drawings, data points may be some distance from one another.1 The relative
paucity of data points in sketches as compared to scanned images (which may have
upto thousands of points per inch) means that traditional noise filtering techniques as in
[5] are less effective.

Given the noisy data, some form of smoothing has long been used, but the relative
paucity of data points makes well known filtering techniques considerably less useful.
Our approach is to compute the direction at a point by fitting an orthogonal distance
regression (ODR) line to a small window of points centered on the point in question.
(Orthogonal distance regression finds a line that minimizes the sum of the orthogonal
distances from the points to the line, unlike linear regression, which minimizes only the
y-distance.) For computational efficiency we use a discrete approximation to the ODR
that is good to 0.5 degree.2 Given the direction along the curve, direction change is
simply the point-to-point difference in direction.

Despite the smoothing done by using a window of points, both direction and direc-
tion change data are noisy (see Fig. 2). We want to select as candidate vertices extrema
points of the direction change curve, but in doing so want to avoid local extrema, while
(of course) finding more than just the single global extreme. To accomplish this we se-
lect only the extrema of the function above a threshold. To avoid the problems posed
by choosing a fixed threshold, we compute the threshold from the direction change data
itself, selecting only those extrema that are greater than twice the average direction

1 The pen typically travels numerous pixels between samplings, because while digitizing tablets
have sub-millimeter accuracy of pen placement, they are typically not sampled fast enough to
provide a data point every time the pen moves from one pixel to the next in a freehand sketch.

2 Principal component analysis solves the same problem: The direction at a point is given by the
eigenvector corresponding to the largest eigenvalue of the covariance matrix for the window
of points surrounding the point in question. But this is computationally more expensive than
our ODR approximation, which is more than accurate enough for our purposes. There are
also gradient descent methods for ODR, but these don’t provide any significant computational
improvement.

change.3 Intuitively, the average-based thresholding process partitions the stroke into
regions of high and low change in direction.

Fig. 2, with its relatively careful hand sketch of a square, shows that in this case the
peaks (here the minima) of the direction change function are good indicators of corners.

Fig. 2. A hand-drawn square; graphs of direction (d) and direction change (dd/dt).

Speed data
Our experience is that direction change data alone rarely provide sufficient reliability.
Noise is one problem, but variety in angle changes is another. Fig. 3 illustrates how
direction fit misses a vertex (at the upper right) because the direction change there was
too small to be detected in the context of the other, larger direction changes. We solve
this problem by incorporating the speed data into our decision as an independent source
of guidance.

Fig. 3.At left the original sketch of a piece of metal; at right the fit generated using only direction
change data.

We measure instantaneous pen speed by measuring the distance pen travels per unit
time. Then we look for speed minima. The intuition here is simply that pen speed drops
when going around a corner in the sketch. Fig. 4 shows (at left) the speed data for the
sketch in Fig. 3, along with the polygon drawn from the speed-detected vertices (at
right).

Using speed data alone has its shortcomings as well. Polylines formed from a com-
bination of very short and long line segments can be problematic: the maximum speed

3 This self scaling frees us to some extent from built-in threshold, but as we point out below, the
scale space theory seems to provide a better methodology for choosing thresholds.

Fig. 4. At left the speed graph for the piece; at right the fit based on only speed data.

reached along the short line segments may not be high enough to indicate the pen has
started traversing another edge, with the result that the entire short segment is inter-
preted as the corner. This problem arises frequently when drawing thin rectangles, com-
mon in mechanical devices.

Our solution is to use information from both sources, and generating hybrid fits by
combining the candidate set from direction changeFd with the candidate set from speed
informationFs, taking into account the system’s certainty that each candidate is a real
vertex.

Generating hybrid fits
Hybrid fit generation occurs in three stages: computing vertex certainties, generating a
set of hybrid fits, and selecting the best fit.

Our certainty metric for a direction change candidate vertexvi is the scaled mag-
nitude of the direction change in a local neighborhood around it expressed by|di−k −
di+k|/dmax. Heredmax is the largest direction change anywhere in the vertices of the
approximation andk is a small integer defining the neighborhood size aroundvi. The
certainty metric for a speed fit candidate vertexvi is a measure of the pen slowdown at
the point,1−vi/vmax, wherevmax is the maximum pen speed anywhere in the vertices
of the approximation.

As is traditional both of these metrics produce values in [0,1], though with differ-
ent scales (as the metrics are used only for ordering within each set, they need not be
numerically comparable). Candidate vertices are sorted by certainty within each fit.

The initial hybrid fitH0 is the intersection ofFd andFs. A succession of additional
fits are then generated by appending toHi the highest scoring direction change and
speed candidates not already inHi.

To do this, on each cycle we create two new fits:H ′
i = Hi + vs (i.e.,Hi augmented

with the best remaining speed fit candidate) andH ′′
i = Hi + vd (i.e., Hi augmented

with the best remaining direction change candidate). We use least squares error as a
metric of the goodness of a fit: the errorεi is computed as the average of the sum of the
squares of the distances to the fit from each point in the strokeS:

εi =
1
|S|

∑

s∈S

ODSQ(s,Hi)

HereODSQ stands fororthogonal distance squared, i.e., the square of the distance
from the stroke point to the relevant line segment of the polyline defined byHi. We

compute the error forH ′
i and forH ′′

i ; the higher scoring of these two (ie., the one with
smaller least squares error) becomesHi+1, the next fit in the succession. This process
continues until all points in the speed and direction change fits have been used. The
result is a set of hybrid fits.

In selecting the best of the hybrid fits the problem is as usual trading off more
vertices in the fit against lower error. Here our approach is simple: We set an error
upper bound and designate as our final fitHf , theHi with the fewest vertices that also
has an error below the threshold.

Handling curves The approach described yields a good approximation to strokes that
consists solely of line segments, but as noted our input may include curves as well,
hence we require a means of detecting and approximating them.

The polyline approximationHf generated in the process described above provides
a natural foundation for detecting areas of curvature. This is done by comparing the
Euclidean distancel1 between each pair of consecutive verticesu, v in Hf to the accu-
mulated arc lengthl2 between the corresponding vertices in the inputS. The ratiol2/l1
is very close to 1 in the linear regions ofS, and significantly higher than 1 in curved
regions.

We approximate curved regions with Bézier curves, defined by two end points and
two control points. Letu = Si, v = Sj , i < j be the end points of the part ofS to be
approximated with a curve. We compute the control points as:

c1 = kt̂1 + v

c2 = kt̂2 + u

k =
1
3

∑

i≤k<j

|Sk − Sk+1|

wheret̂1 andt̂2 are the unit length tangent vectors pointing inwards at the curve segment
to be approximated. The 1/3 factor ink controls how much we scalêt1 andt̂2 in order
to reach the control points; the summation is simply the length of the chord betweenSi

andSj .4

As in fitting polylines, we want to use least squares to evaluate the goodness of a fit,
but computing orthogonal distances from eachSi in the input stroke to the B́ezier curve
segments would require solving a fifth degree polynomial. (Bézier curves are described
by third degree polynomials, hence computing the minimum distance from an arbitrary
point to the curve involves minimizing a sixth degree polynomial, equivalent to solving
a fifth degree polynomial.) A numerical solution is both computationally expensive and
heavily dependent on the goodness of the initial guesses for roots [13], hence we resort
to an approximation. We discretize the Bézier curve using a piecewise linear curve and
compute the error for that curve. This error computation isO(n) because we impose a
finite upper bound on the number of segments used in the piecewise approximation.

4 The 1/3 constant was determined empirically, but works very well for freehand sketches. As
we discovered subsequently, the same constant was independently chosen in [16].

If the error for the B́ezier approximation is higher than our maximum error toler-
ance, the curve is recursively subdivided in the middle, where middle is defined as the
data point in the original stroke whose index is midway between the indices of the two
endpoints of the original B́ezier curve. New control points are computed for each half
of the curve, and the process continues until the desired precision is achieved.

One example of the capability of our approach is shown in Fig. 5, a hastily-sketched
mixture of lines and curves.

Fig. 5. Two examples of arbitrary stroke approximation. Boundaries of Bézier curves are indi-
cated with crosses and detected vertices are indicated with dots.

3.2 Beautification

Beautification refers to the (currently minor) adjustments made to the approximation
layer’s output, primarily to make it look as intended. We adjust the slopes of the line
segments in order to ensure the lines that were apparently meant to have the same
slope end up being parallel. This is accomplished by looking for clusters of slopes
in the final fit produced by the approximation phase, using a simple sliding-window
histogram. Each line in a detected cluster is then rotated around its midpoint to make
its slope be the weighted average of the slopes in that cluster. The (new) endpoints
of these line segments are determined by the intersections of each consecutive pair of
lines. This process (like any neatening of the drawing) may result in vertices being
moved; we chose to rotate the edges about their midpoints because this produces vertex
locations that are close to those detected, have small least square errors when measured
against the original sketch, and look right to the user. Fig. 6 shows the original stroke
for the metal piece we had before, and the output of the beautifier. Some examples of
beautification are also present in Fig. 8.

Fig. 6. At left the original sketch of a piece of metal revisited, and the final beautified output at
right.

3.3 Basic Object Recognition

The final step in our processing is recognition of the most basic objects that can be built
from the line segments and curve segments produced thus far, i.e., simple geometric
objects (ovals, circles, rectangles, squares).

Recognition of these objects is done with hand-tailored templates that examine var-
ious simple properties. A rectangle, for example, is recognized as a polyline with 4
segments all of whose vertices are within a specified distance of the center of the fig-
ure’s bounding box; a stroke will be recognized as an oval if it has a small least squares
error when compared to an oval whose axes are given by the bounding box of the stroke.

3.4 Evaluation

Fig. 8 shows the original input and the program’s analysis for a variety of simple but
realistic mechanical devices drawn as freehand sketches. The last two of them are dif-
ferent sketches for a part of the direction reversing mechanism for a tape player.5

At this point the only evaluation is an informal comparison of the raw sketch and the
system’s approximations, determining whether the system has selected vertices where
they were drawn, fit lines and curves accurately, and successfully recognized basic geo-
metric objects. While informal, this is an appropriate evaluation because the program’s
goal is to produce an analysis of the strokes that “looks like” what was sketched.

It is worth noting that among the examples in Fig. 8 the number of loops in the
spring strokes, and the number of shading lines in the ground objects are not neces-
sarily equal to their counterparts in the recognized versions, because in each case, the
raw strokes are replaced with a generic object of the recognized type. These generic
objects only carry the important attributes of the strokes forming them (such as the end
points of the spring, and the bounding boxes of both the spring and the ground object).
On the other hand, features such as the number of loops in the spring stroke, and the
number of shading lines in the ground object need not to be preserved (unless we face
a scenario where they are considered to contain information). These choices are made
by the higher level recognition system.

5 These examples also show some higher level domain specific recognition. Recognized domain
specific components include gears (indicated by a circle with a cross), springs (indicated by
wavy lines), and the standard fixed-frame symbol (a collection of short parallel lines). Com-
ponents that are recognized are replaced with standard icons scaled to fit the sketch.

We have also begun to deal with overtracing, one of the (many) things that distin-
guishes freehand sketches from careful diagrams. Fig. 7 illustrates one example of the
limited ability we have thus far embodied in the program.

Fig. 7. An overtraced oval and a line along with and the system’s output.

4 Related work

The Phoenix sketching system [16] had some of the same motivation as our work, but a
more limited focus on interactive curve specification. While the system provided some
support for vertex detection, its focus on curves led it to use Gaussian filters to smooth
the data. While effective for curves, Gaussians tend to treat vertices as noise to be
reduced, obscuring vertex location. As a result the user was often required to specify
the vertices manually.

Work in [6] describes a system for sketching with constraints that supports geo-
metric recognition for simple strokes (as well as a constraint maintenance system and
extrusion for generating solid geometries). The set of primitives is more limited than
ours: each stroke is interpreted as a line, arc or as a Bézier curve. More complex shapes
can be formed by combinations of these primitives, but only by user lifting the pen at
the end of each primitive stroke, reducing the feeling of natural sketching.

The work in [3] describes a system for generating realtime spline curves from in-
teractively sketched data. They focus on using knot removal techniques to approximate
strokes known to be composed only of curves, and do not handle single strokes that
contain both lines and curves. They do not support corner detection, instead requiring
the user to specify corners and discontinuities by lifting the mouse button, or equiva-
lently by lifting the pen. We believe our approach of automatically detecting the feature
points provides a more natural and convenient sketching interface.

Zeleznik [8] describes a mode-based stroke approximation system that uses simple
rules for detecting the drawing mode. The user has to draw objects in pieces, reducing
the sense of natural sketching. Switching modes is done by pressing modifier buttons in
the pen or in the keyboard. In this system, a click of the mouse followed by immediate
dragging signals that the user is drawing a line. A click followed by a pause and then
dragging of the mouse tells the system to enter the freehand curve mode. Our system
allows drawing arbitrary shapes without any restriction on how the user draws them.
There is enough information provided by the freehand drawing to differentiate geomet-
ric shapes such as curves, polylines, circles and lines from one another, so we believe
requiring the user to draw things in a particular fashion is unnecessary and reduces the

natural feeling of sketching. Our goal is to make computers understand what the user is
doing rather than requiring the user to sketch in a way that the computer can understand.

Among the large body of work on beautification, Igarashi et al. [9] describes a sys-
tem combining beautification with constraint satisfaction, focusing on exploiting fea-
tures such as parallelism, perpendicularity, congruence and symmetry. The system in-
fers geometric constraints by comparing the input stroke with previous ones. Because
sketches are inherently ambiguous, their system generates multiple interpretations cor-
responding to different ways of beautifying the input, and the most plausible interpreta-
tion is chosen among these interpretations. The system is interactive, requiring the user
to do the selection, and doesn’t support curves. It is, nevertheless, more effective then
ours at beautification, but beautification is not the main focus of our work and is present
for the purposes of completeness.

5 Future Work

Future directions for this work include user studies to measure the degree to which
the system is both natural and accurate, i.e., supplies the feeling of freehand sketching
while still successfully interpreting the strokes.

We are also working to link this early processing to other work in our group that
has focused on recognition [1] of higher level mechanical objects. This will provide the
opportunity to add model-based processing of the stroke, in which early operations like
vertex localization may be usefully guided by knowledge of the current best recognition
hypothesis.

In addition, incorporating ideas from scale space theory looks like a promising way
of detecting different scales inherent in the data and avoidinga priori judgements about
the size of relevant features. In the pattern recognition community [4], [12] and [11]
apply some of the ideas from scale space theory to similar problems. We are currently
working on ways of applying these techniques to speed and direction change data. We
believe this may allow us to deal with sketches that contain relevant details at a variety
of scales more effectively. There is no way of deciding which scales are important at
the geometric level, so using constraints and/or information provided by the domain of
application may help in scale selection.

Humans naturally seem to slow down when they draw things carefully as opposed
to casually, so another interesting research direction would be to explore the degree to
which one can use the time it takes to draw a stroke as an indication of how careful and
precise the user meant to be. Combining this idea with machine learning methods may
result in interesting results.

6 Conclusion

We have built a system capable of using multiple sources of information to produce
good approximations of freehand sketches. Users can sketch on an input device as if
drawing on paper and have the computer detect the low level geometry, enabling a
more natural interaction with the computer, as a first step toward use of computers far
earlier in the design cycle.

Fig. 8. Performance examples: The first two pair are sketches of a marble dispenser mechanism
and a toggle switch. The last two are sketches of the direction reversing mechanism in a tape
player.

References

[1] Christine Alvarado. A natural sketching environment: Bringing the computer into early
stages of mechanical design. Master’s thesis, Massachusetts Institute of Technology, 2000.

[2] H. S. Baird, H. Bunke, and K. Yamamoto. Structured document image analysis. Springer-
Verlag, Heidelberg, 1992.

[3] M. Banks and E. Cohen. Realtime spline curves from interactively sketched data. In
SIGGRAPH, Symposium on 3D Graphics, pages 99–107, 1990.

[4] A. Bentsson and J. Eklundh. Shape representation by multiscale contour approximation.
IEEE PAMI 13, p. 85–93, 1992., 1992.

[5] L. David. Perceptual Organization and Visual Recognition. Kluwer Academic Publishers,
1985.

[6] L. Eggli. Sketching with constraints. Master’s thesis, University of Utah, 1994.
[7] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D. Raj Reddy. TheHEARSAY-

II speech understanding system: Integrating knowledge to resolve uncertainty.Computing
Surveys, 12:213–253, 1980. Reprinted in:Readings in Artificial Intelligence, Bonnie L.
Webber and Nils J. Nilssen (eds.)(1981), pp 349-389. Morgan Kaufman Pub. Inc., Los
Altos, CA.

[8] R. Zeleznik et al. Sketch: An interface for sketching 3d scenes. InProceedings of SIG-
GRAPH’96, pages 163–170, 1996.

[9] T. Igarashi et. al. Interactive beautification: A technique for rapid geometric design. In
UIST ’97, pages 105–114, 1997.

[10] James A. Landay and Brad A. Myers. Sketching interfaces: Toward more human interface
design.IEEE Computer, vol. 34, no. 3, March 2001, pp. 56-64.

[11] T. Lindeberg. Edge detection and ridge detection with automatic scale selection.ISRN
KTH/NA/P–96/06–SE, 1996., 1996.

[12] A. Rattarangsi and R. T. Chin. Scale-based detection of corners of planar curves.IEEE
Transactionsos Pattern Analysis and Machine Intelligence, 14(4):430–339, April 1992.

[13] N. Redding. Implicit polynomials, orthogonal distance regression, and closest point on a
curve. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 191–199,
2000.

[14] R. Rosin. Techniques for assessing polygonal approximations of curves.7th British Ma-
chine Vision Conf., Edinburgh, 1996.

[15] Dean Rubine. Specifying gestures by example.Computer Graphics, 25(4):329–337, 1991.
[16] P. Schneider. Phoenix: An interactive curve design system based on the automatic fitting of

hand-sketched curves. Master’s thesis, University of Washington, 1988.
[17] K. Tombre. Analysis of engineering drawings. InGREC 2nd international workshop, pages

257–264, 1997.

